[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Heuristics for a Matrix Symmetrization Problem

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4967))

  • 957 Accesses

Abstract

We consider the following problem: given a square, nonsymmetric, (0,1)-matrix, find a permutation of its columns that yields a zero-free diagonal and maximizes the symmetry. The problem is known to be NP-hard. We propose a fast iterative-improvement based heuristic and evaluate the performance of the heuristic on a large set of matrices.

This work was supported by “Agence Nationale de la Recherche”, ANR-06-CIS6-010.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benzi, M., Haws, J.C., Tůma, M.: Preconditioning highly indefinite and nonsymmetric matrices. SIAM Journal on Scientific Computing 22, 1333–1353 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Boros, E., Gurvich, V., Zverovich, I.: Neighborhood hypergraphs of bipartite graphs. Technical Report RRR 12-2006, RUTCOR, Piscataway, New Jersey (2006)

    Google Scholar 

  3. Bui, T.N., Jones, C.: Finding good approximate vertex and edge partitions is NP-hard. Information Processing Letters 42, 153–159 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Colbourn, C.J., McKay, B.D.: A correction to Colbourn’s paper on the complexity of matrix symmetrizability. Information Processing Letters 11, 96–97 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  5. Davis, T.: University of Florida sparse matrix collection. NA Digest 92/96/97 (1994/1996/1997), http://www.cise.ufl.edu/research/sparse/matrices

  6. Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Oxford University Press, London (1986)

    MATH  Google Scholar 

  7. Duff, I.S., Koster, J.: On algorithms for permuting large entries to the diagonal of a sparse matrix. SIAM Journal on Matrix Analysis and Applications 22, 973–996 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hendrickson, B., Kolda, T.G.: Partitioning rectangular and structurally unsymmetric sparse matrices for parallel processing. SIAM Journal on Scientific Computing 21, 2048–2072 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. HSL: A collection of Fortran codes for large-scale scientific computation (2004), http://www.cse.scitech.ac.uk/nag/hsl

  10. Hu, Y.F., Scott, J.A.: Ordering techniques for singly bordered block diagonal forms for unsymmetric parallel sparse direct solvers. Numerical Linear Algebra with Applications 12, 877–894 (2005)

    Article  MathSciNet  Google Scholar 

  11. Karypis, G., Kumar, V.: MeTiS: A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices, version 4.0. University of Minnesota, Department of Computer Science/Army HPC Research Center, Minneapolis, MN 55455 (1998)

    Google Scholar 

  12. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. The Bell System Technical Journal 49, 291–307 (1970)

    Google Scholar 

  13. Lawler, E.: Combinatorial Optimization: Networks and Matroids. Dover, Mineola, New York (unabridged reprint of Combinatorial Optimization: Networks and Matroids, originally published by New York: Holt, Rinehart, and Wilson, c1976) (2001)

    Google Scholar 

  14. Pothen, A., Fan, C.-J.: Computing the block triangular form of a sparse matrix. ACM Transactions on Mathematical Software 16, 303–324 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Reid, J.K., Scott, J.A.: Reducing the total bandwidth of a sparse unsymmetric matrix. SIAM Journal on Matrix Analysis and Applications 28, 805–821 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roman Wyrzykowski Jack Dongarra Konrad Karczewski Jerzy Wasniewski

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Uçar, B. (2008). Heuristics for a Matrix Symmetrization Problem. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2007. Lecture Notes in Computer Science, vol 4967. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68111-3_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68111-3_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68105-2

  • Online ISBN: 978-3-540-68111-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics