[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Optimizing the Shape of an Impeller Using the Differential Ant-Stigmergy Algorithm

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4967))

  • 1204 Accesses

Abstract

A metaheuristic optimization algorithm for solving multi-parameter optimization problems is presented. The algorithm is applied to a real-world problem, where the aerodynamic power efficiency of the radial impeller of a vacuum cleaner is optimized. Here, the radial impeller is presented using parametric modeling. Due to the large number of parameters and, consequently, the enormous search space, an efficient metaheuristic approach is inevitable. Therefore, the so-called Differential Ant-Stigmergy Algorithm, which is an extension of the Ant-Colony Optimization for a continuous domain, is applied. The result of this is that the aerodynamic power of the radial impeller is increased by twenty percent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bilchev, G., Parmee, I.C.: The ant colony metaphor for searching continuous design spaces. LNCS, vol. 993, pp. 25–39. Springer, Heidelberg (1995)

    Google Scholar 

  2. Chung, T.J., T.J.: Computational Fluid Dynamics. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  3. Deb, K., Anand, A., Joshi, D.: A computationally efficient evolutionary algorithm for real-parameter optimization. Evol. Comput. 10, 371–395 (2002)

    Article  Google Scholar 

  4. Dixon, S.L.: Fluid Mechanics and Thermodynamics of Turbomachinery, 4th edn. Elsevier, Amsterdam (1998)

    Google Scholar 

  5. Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, Cambridge (2004)

    MATH  Google Scholar 

  6. Dréo, J., Siarry, P.: A new ant colony algorithm using the heterarchical concept aimed at optimization of multiminima continuous functions. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 216–227. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht (1997)

    MATH  Google Scholar 

  8. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. IEEE International Conference on Neural Networks, Perth, Australia, November/December 1995, pp. 1942–1948 (1995)

    Google Scholar 

  9. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  10. Kohnke, P. (ed.): ANSYS, Inc. Theory Reference, ANSYS Release 9.0. ANSYS, Inc. (2004)

    Google Scholar 

  11. Korošec, P., Šilc, J.: Real-parameter optimization using stigmergy. In: Proc. Second International Conference on Bioinspired Optimization Methods and their Applications, Ljubljana, Slovenia, October 2006, pp. 73–84 (2006)

    Google Scholar 

  12. Korošec, P., Šilc, J., Oblak, K., Kosel, F.: The differential ant-stigmergy algorithm: An experimental evaluation and a real-world application. In: Proc. IEEE Congress on Evolutionary Computation, Singapore, September 2007, pp. 157–164 (2007)

    Google Scholar 

  13. Kundu, P.K., Cohen, I.M.: Fluid Mechanics. Academic Press, London (2002)

    Google Scholar 

  14. Price, W.L.: Global optimization by controlled random search. J. Optimization Theory Appl. 40, 333–348 (1978)

    Article  MathSciNet  Google Scholar 

  15. Reklaitis, G.V., Ravindran, A., Ragsdell, K.M.: Engineering Optimization Methods. Wiley, Chichester (1983)

    Google Scholar 

  16. Socha, K.: ACO for continuous and mixed-variable optimization. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 25–36. Springer, Heidelberg (2004)

    Google Scholar 

  17. Storn, R., Price, K.V.: Differential evolution – A simple and efficient huristic for global optimization over continuous space. J. Global Optim. 11, 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Tsutsui, S.: An enhanced aggregation pheromone system for real-parameter optimization in the ACO metaphor. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 60–71. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Wright, A.H.: Genetic algorithms for real parameter optimization. In: Proc. 1st Workshop on Foundations of Genetic Algorithms, Bloomington, IN, July 1990, pp. 205–218 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roman Wyrzykowski Jack Dongarra Konrad Karczewski Jerzy Wasniewski

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Korošec, P., Šilc, J., Oblak, K., Kosel, F. (2008). Optimizing the Shape of an Impeller Using the Differential Ant-Stigmergy Algorithm. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2007. Lecture Notes in Computer Science, vol 4967. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68111-3_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68111-3_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68105-2

  • Online ISBN: 978-3-540-68111-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics