[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Using Labelled and Unlabelled Data to Train a Multilayer Perceptron for Colour Classification in Graphic Arts

  • Conference paper
Multiple Approaches to Intelligent Systems (IEA/AIE 1999)

Abstract

This paper presents an approach to using both labelled and unlabelled data to train a multi-layer perceptron. The unlabelled data are iteratively pre-processed by a perceptron being trained to obtain the soft class label estimates. It is demonstrated that substantial gains in classification performance may be achieved from the use of the approach when the labelled data do not adequately represent the entire class distributions. The experimental investigations performed have shown that the approach proposed may be successfully used to train networks for colour classification in graphic arts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Castelli, V., Cover, T.M.: On the exponential value of labeled samples. Pattern Recognition Letters 16, 105–111 (1995)

    Article  Google Scholar 

  2. Lippman, R.P.: Pattern Classification Using Neural Networks. IEEE Communications Magazine 27, 47–64 (1989)

    Article  Google Scholar 

  3. Miller, D.J., Uyar, H.S.: Combined learning and use for a mixture model equivalent to the RBF classifier. Neural Computation 10, 281–293 (1998)

    Article  Google Scholar 

  4. Miller, D.J., Uyar, H.S.: A mixture of experts classifier with learning based on both labelled and unlabelled data. In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Systems, vol. 9, pp. 571–577. MIT Press, Cambridge (1997)

    Google Scholar 

  5. Ruck, D.W., Rogers, S.K., Kabrisky, M., Oxley, M.E., Suter, B.W.: The multilayer perceptron as an approximation to a Bayes optimal discriminant function. IEEE Trans. Neural Networks 1, 296–298 (1990)

    Article  Google Scholar 

  6. Shashahani, B., Landgrebe, D.: The Effect on Unlabelled Samples in Reducing the Small Sample Size Problem and Mitigating the Huges Phenomenon. IEEE Transactions on Geoscience and Remote Sensing 32, 1087–1095 (1994)

    Article  Google Scholar 

  7. Towell, G.: Using unlabeled data for supervised learning. In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Systems, vol. 9, pp. 647–653. MIT Press, Cambridge (1997)

    Google Scholar 

  8. Verikas, A., Malmqvist, K., Bergman, L.: Colour Image Segmentation by Modular Neural Network. Pattern Recognition Letters 18, 173–185 (1997)

    Article  Google Scholar 

  9. Verikas, A., Malmqvist, K., Bergman, L., Signahl, M.: Colour Classification by Neural Networks in Graphic Arts. Neural Computing & Applications 7, 52–64 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Verikas, A., Gelzinis, A., Malmqvist, K. (1999). Using Labelled and Unlabelled Data to Train a Multilayer Perceptron for Colour Classification in Graphic Arts. In: Imam, I., Kodratoff, Y., El-Dessouki, A., Ali, M. (eds) Multiple Approaches to Intelligent Systems. IEA/AIE 1999. Lecture Notes in Computer Science(), vol 1611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48765-4_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48765-4_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66076-7

  • Online ISBN: 978-3-540-48765-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics