[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Four c-Regression Methods and Classification Functions

  • Conference paper
New Directions in Rough Sets, Data Mining, and Granular-Soft Computing (RSFDGrC 1999)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1711))

Abstract

Four methods of c-regression are compared. Two of them are methods of fuzzy clustering: (a) the fuzzy c-regression methods, and (b) an entropy method proposed by the authors. Two others are probabilistic methods of (c) the deterministic annealing, and (d) the mixture distribution method using the EM algorithm. It is shown that the entropy method yields the same formula as that of the deterministic annealing. Clustering results as well as classification functions are compared. The classification functions for fuzzy clustering are fuzzy rules interpolating cluster memberships, while those for the latter two are probabilistic rules. Theoretical properties of the classification functions are studied. A numerical example is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)

    MATH  Google Scholar 

  2. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. of the Royal Statistical Society, B. 39, 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  3. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. of Cybernetics 3, 32–57 (1974)

    Article  MathSciNet  Google Scholar 

  4. Hathaway, R.J., Bezdek, J.C.: Switching regression models and fuzzy clustering. IEEE Trans. on Fuzzy Syst. 1, 195–204 (1993)

    Article  Google Scholar 

  5. Li, R.-P., Mukaidono, M.: A maximum entropy approach to fuzzy clustering. In: Proc. of the 4th IEEE Intern. Conf. on Fuzzy Systems, Yokohama, Japan, March 20-24, pp. 2227–2232 (1995)

    Google Scholar 

  6. Masulli, F., Artuso, M., Bogus, P., Schenone, A.: Fuzzy clustering methods for the segmentation of multivariate medical images. In: Proc. of the 7th International Fuzzy Systems Association World Congress, Prague, Chech, June 25-30, pp. 123–128 (1997)

    Google Scholar 

  7. Miyamoto, S., Mukaidono, M.: Fuzzy c - means as a regularization and maximum entropy approach. In: Proc. of the 7th International Fuzzy Systems Association World Congress, Prague, Chech, June 25-30, vol. II, pp. 86–92 (1997)

    Google Scholar 

  8. Miyamoto, S., Umayahara, K.: Fuzzy clustering by quadratic regularization. In: Proc. of FUZZ-IEEE 1998, Anchorage, Alaska, May 4-9, pp. 791–795 (1998)

    Google Scholar 

  9. Miyamoto, S., Umayahara, K.: Two methods of fuzzy c-means and classiication functions. In: Proc. of 6th Conf. of the International Federation of Classiication Societies, Roma, Italy, July 21-24, pp. 105–110 (1998)

    Google Scholar 

  10. Redner, R.A., Walker, H.F.: Mixture densities, maximum likelihood and the EM algorithm. SIAM Review 26(2), 195–239 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  11. Rose, K., Gurewitz, E., Fox, G.: A deterministic annealing approach to clustering. Pattern Recognition Letters 11, 589–594 (1990)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Miyamoto, S., Umayahara, K., Nemoto, T. (1999). Four c-Regression Methods and Classification Functions. In: Zhong, N., Skowron, A., Ohsuga, S. (eds) New Directions in Rough Sets, Data Mining, and Granular-Soft Computing. RSFDGrC 1999. Lecture Notes in Computer Science(), vol 1711. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48061-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48061-7_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66645-5

  • Online ISBN: 978-3-540-48061-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics