[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Others Also Use: A Robust Recommender System for Scientific Libraries

  • Conference paper
Research and Advanced Technology for Digital Libraries (ECDL 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2769))

Included in the following conference series:

Abstract

Scientific digital library systems are a very promising application area for value-added expert advice services. Such systems could significantly reduce the search and evaluation costs of information products for students and scientists. This holds for pure digital libraries as well as for traditional scientific libraries with online public access catalogs (OPAC). In this contribution we first outline different types of recommendation services for scientific libraries and their general integration strategies. Then we focus on a recommender system based on log file analysis that is fully operational within the legacy library system of the Universität Karlsruhe (TH) since June 2002. Its underlying mathematical model, the implementation within the OPAC, as well as the first user evaluation is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Buneman, P., Jajodia, S. (eds.) Proc. ACM SIGMOD Int. Conf. on Management of Data, Washington, D.C., USA, vol. 22, ACM Press, New York (1993)

    Google Scholar 

  2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. 20th Very Large Databases Conf., Santiago, Chile, September 1994, pp. 487–499 (1994)

    Google Scholar 

  3. Ansari, A., Essegaier, S., Kohli, R.: Internet recommendation systems. Journal of Marketing Research 37, 363–375 (2000)

    Article  Google Scholar 

  4. Apps, A., MacIntyre, R.: Prototyping Digital Library Technologies in zetoc. In: Agosti, M., Thanos, C. (eds.) ECDL 2002. LNCS, vol. 2458, pp. 309–323. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Aumann, Y., Lindell, Y.: A statistical theory for quantitative association rules. In: Chaudhuri, U., Madigan, D. (eds.) Proc. 5th ACM SIGKDD int. conference on Knowledge Discovey and Data Mining, San Diego, California, pp. 261–270. ACM press, New York (1999)

    Chapter  Google Scholar 

  6. Balabanovic, M.: An adaptive web page recommendation service. In: Proc. 1st Int. Conf. on Autonomous Agents, Marina del Rey, California (February 1997)

    Google Scholar 

  7. Balabanovic, M., Shoham, Y.: Fab: Content-based, collaborative recommendation. Communications of the ACM 40(3), 66–72 (1997)

    Article  Google Scholar 

  8. Bollen, J., Rocha, L.M.: Anadaptive systems approach to the implementation and evaluation of digital library recommendation systems. In: Borbinha, J.L., Baker, T. (eds.) ECDL 2000. LNCS, vol. 1923, pp. 356–359. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: Generalizing association rules to correlations. In: Peckman, J.M. (ed.) Proc. ACM SIGMOD Int. Conf. on Management of Data, Tucson, Arizona, vol. 26, pp. 265–276. ACM Press, New York (1997)

    Chapter  Google Scholar 

  10. Die Deutsche Bibliothek. MAB: Maschinelles Austauschformat für bibliotheken, http://www.ddb.de/professionell/mab.htm

  11. Ehrenberg, A.S.C.: Repeat-Buying: Facts, Theory and Applications, 2nd edn. Charles Griffin & Company Ltd., London (1988)

    Google Scholar 

  12. Fuhr, N., et al.: Daffodil: an integrated desktop for supporting high-level search activities in federated digital libraries. In: Agosti, M., Thanos, C. (eds.) ECDL 2002. LNCS, vol. 2458, pp. 597–612. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Geyer-Schulz, A., Hahsler, M., Jahn, M.: A customer purchase incidence model applied to recommender services. In: Kohavi, R., Masand, B., Spiliopoulou, M., Srivastava, J. (eds.) WebKDD 2001. LNCS (LNAI), vol. 2356, pp. 25–47. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Geyer-Schulz, A., Hahsler, M., Jahn, M.: Recommendations for virtual universities from observed user behavior. In: Gaul, W., Ritter, G. (eds.) Classification, Automation, and New Media, Studies in Classification, Data Analysis, and Knowledge Organization, vol. 20, pp. 273–280. Springer, Heidelberg (2002)

    Google Scholar 

  15. Geyer-Schulz, A., Hahsler, M., Neumann, A., Thede, A.: Behavior-based recommender systems as value-added services for scientific libraries. In: Bozdogan, H. (ed.) Statistical Data Mining and Knowledge Discovery. Chapmann & Hall, Sydney (2003)

    Google Scholar 

  16. Geyer-Schulz, A., Hahsler, M., Neumann, A., Thede, A.: An integration strategy for distributed recommender services in legacy library systems. In: Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Heidelberg (2003) (to appear)

    Google Scholar 

  17. Geyer-Schulz, A., Hahsler, M., Thede, A.: Comparing association-rules and repeat-buying based recommender systems in a B2B environment. In: Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Heidelberg (2003) (to appear)

    Google Scholar 

  18. The Stanford Digital Libraries Group. The stanford digital library project. Communications of the ACM 38(4), 59–60 (1995)

    Google Scholar 

  19. Hicks, D., Tochtermann, K., Kussmaul, A.: Augmenting digital catalogue functionality with support for customization. In: Proc. 3rd Int. Conf. on Asian Digital Libraries (2000)

    Google Scholar 

  20. Johnson, N.L., Kemp, A.W., Kotz, S.: Univariate Discrete Distributions. Wiley Series in Probability and Mathematical Statistics, 2nd edn. J. Wiley, Chichester (1993)

    Google Scholar 

  21. Klatt, R., et al.: Nutzung und Potenziale der innovativen Mediennutzung im Lernalltag der Hochschulen. BMBF-Studie (2001), http://www.stefi.de

  22. Konstan, J., et al.: Grouplens: Applying Collaborative Filtering to Usernet News. Communications of the ACM 40(3), 77–87 (1997)

    Article  Google Scholar 

  23. Mild, A., Natter, M.: Collaborative filtering or regression models for internet recommendation systems? Journal of Targeting, Measurement and Analysis for Marketing 10(4), 304–313 (2002)

    Article  Google Scholar 

  24. Milgrom, P., Roberts, J.: Economics, Organization and Management, 1st edn. Prentice-Hall, Upper Saddle River (1992)

    Google Scholar 

  25. Papadakis, I., Andreou, I., Chrissikopoulos, V.: Interactive search results. In: Agosti, M., Thanos, C. (eds.) ECDL 2002. LNCS, vol. 2458, pp. 448–462. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  26. Rolski, T., et al.: Stochastic processes for insurance and finance. J. Wiley, Chichester (1999)

    Book  MATH  Google Scholar 

  27. Salton, G., Buckley, C.: Improving retrieval performance by relevance feedback. Journal of the American Society for Information Science 41(4), 288–297 (1990)

    Article  Google Scholar 

  28. Virtual university of the Wirtschaftsuniversität Wien, http://vu.wu-wien.ac.at/

  29. Wagner, U., Taudes, A.: Stochastic models of consumer behaviour. European Journal of Operational Research 29(1), 1–23 (1987)

    Article  MathSciNet  Google Scholar 

  30. Wilensky, R., et al.: Reinventing scholarly information dissemination and use. Technical report, University of California, Berkeley (1999), http://elib.cs.berkeley.edu/pl/about.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Geyer-Schulz, A., Neumann, A., Thede, A. (2003). Others Also Use: A Robust Recommender System for Scientific Libraries. In: Koch, T., Sølvberg, I.T. (eds) Research and Advanced Technology for Digital Libraries. ECDL 2003. Lecture Notes in Computer Science, vol 2769. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45175-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45175-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40726-3

  • Online ISBN: 978-3-540-45175-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics