Abstract
We determine a statistic called the radially Persistent Angular Structure (PAS) from samples of the Fourier transform of a three-dimensional function. The method has applications in diffusion magnetic resonance imaging (MRI), which samples the Fourier transform of the probability density function of particle displacements. The persistent angular structure is then a representation of the relative mobility of particles in each direction. In combination, PAS-MRI computes the persistent angular structure at each voxel of an image. This technique has biomedical applications, where it reveals the orientations of microstructural fibres, such as white-matter fibres in the brain.
We test PAS-MRI on synthetic and human brain data. The data come from a standard acquisition scheme for diffusion-tensor MRI in which the samples in each voxel lie on a sphere in Fourier space.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Basser, P.J., Matiello, J., Le Bihan, D.: MR diffusion tensor spectroscopy and imaging. Biophysical Journal 66, 259–267 (1994)
Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative diffusion tensor MRI. Journal of Magnetic Resonance Series B 111, 209–219 (1996)
Pierpaoli, C., Jezzard, P., Basser, P.J., Barnett, A., Di Chiro, G.: Diffusion tensor imaging of the human brain. Radiology 201, 637–648 (1996)
2003 Persistent angular structure: new insights from diffusion MRI data. Inverse Problems (submitted)
Stejskal, E.O., Tanner, T.E.: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. The Journal of Chemical Physics 42, 288–292 (1965)
Callaghan, P.T.: Principles of Magnetic Resonance Microscopy. Oxford Science Publications, Oxford (1991)
Mitra, P.P., Halperin, B.I.: Effects of finite gradient-pulse widths in pulsedfield-gradient diffusion measurement. Journal of Magnetic Resonance 113, 94–101 (1995)
Wedeen, V.J., Reese, T.G., Tuch, D.S., Dou, J.-G., Weiskoff, R.M., Chessler, D.: Mapping fiber orientation spectra in cerebral white matter with Fourier-transform diffusion MRI. In: Proc. 7th Annual Meeting of the ISMRM, Philadelphia, Berkeley, USA, p. 321 (2000)
Crank, J.: Mathematics of diffusion. Oxford University Press, Oxford (1975)
Jones, D.K., Horsfield, M.A., Simmons, A.: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magnetic Resonance in Medicine 42, 515–525 (1999)
Hasan, K.M., Parker, D.L., Alexander, A.L.: Comparison of gradient encoding schemes for diffusion-tensor MRI. Journal of Magnetic Resonance Imaging 13, 769–780 (2001)
Frank, L.R.: Characterization of anisotropy in high angular resolution diffusionweighted MRI. Magnetic Resonance in Medicine 47, 1083–1099 (2002)
Alexander, A.L., Hasan, K.M., Lazar, M., Tsuruda, J.S., Parker, D.L.: Analysis of partial volume effects in diffusion-tensor MRI. Magnetic Resonance in Medicine 45, 770–780 (2001)
Alexander, D.C., Barker, G.J., Arridge, S.R.: Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data. Magnetic Resonance in Medicine 48, 331–340 (2002)
Le Bihan, D.: Molecular diffusion, tissue microdynamics and microstructure. NMR in Biomedicine 8, 375–386 (1995)
Skilling, J., Gull, S.F.: Algorithms and applications. In: Smith, C.R., Grandy, W.T. (eds.) Maximum Entropy and Bayesian methods in Inverse Problems, pp. 83–132. Reidel publishing company, Dordrecht (1985)
Press, W.H., Teukolsky, S.A., Vettering, W.T., Flannery, B.P.: Numerical Recipes in C. Press Syndicate of the University of Cambridge, New York (1988)
Barker, G.J., Wheeler-Kingshott, C.: Personal Communication
Woods, R.P., Grafton, S.T., Holmes, C.J., Cherry, S.R., Mazziotta, J.C.: Automated image registration: I general methods and intra-subject intra-modality validation. Journal of Computer Assisted Tomography 22, 141–154 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jansons, K.M., Alexander, D.C. (2003). Persistent Angular Structure: New Insights from Diffusion MRI Data. Dummy Version. In: Taylor, C., Noble, J.A. (eds) Information Processing in Medical Imaging. IPMI 2003. Lecture Notes in Computer Science, vol 2732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45087-0_56
Download citation
DOI: https://doi.org/10.1007/978-3-540-45087-0_56
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40560-3
Online ISBN: 978-3-540-45087-0
eBook Packages: Springer Book Archive