Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. In P. Buneman and S. Jajodia, editors, Proc. of the ACM SIGMOD International Conference on Management of Data, volume 22, pages 207-216, Washington, 1993. ACM press.
R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. of the 20th VLDB Conference, pages 487-499, 1994.
J. Azé. Une nouvelle mesure de qualité pour l’extraction de pépites de connaissances. Revue des Sciences et Technologies de l’Information, 17:171-182, 2003.
R. J. Bayardo. Efficiently mining long patterns from databases. In Proc. of the ACM SIGMOD Conference, pages 85-93, 1998.
J. Blanchard, F. Guillet, H. Brilland, and R. Gras. Assessing rule interestigness with a probabilistic measure of deviation from equilibrium. In Proc. of Applied stochastic Models and Data Analysis, pages 334-344, ENST Bretagne, France, 2005.
S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket data. In Proc. of the ACM SIGMOD Conference, pages 255-264, 1997.
D. Feno, J. Diatta, and A. Totohasina. Normalisée d’une mesure probabiliste de qualité des règles d’association: étude de cas. In Actes du 2nd Atelier Qualité des Données et des Connaissances, pages 25-30, Lille, France, 2006.
A.A. Freitas. On rule interestingness measure. Knowledge-Based System, 12:309-315, 1999.
R. Gras. L’implication statistique. Nouvelle méthode exploratoire de données. La Penée sauvage, France, 1996.
S. Guillaume. Traitement des données volumineuses. Mesures et algorithmes d’extraction des règles d’association et règles ordinales. PhD thesis, Université de Nantes, France, 2000.
R. J. Hilderman and H. J. Hamilton. Knowledge discovery and interestingness measures: A survey. Technical Report CS 99-04, Department of Computer Science, University of Regina, 1999.
J. Hipp, U. Güntzer, and G. Nakhaeizadeh. Algorithms for Association Rule Mining - a General Survey and Comparison. SIGKDD Explorations, 2:58-64, 2000.
ıane. Mining positive and negative Association Rules: an approach for confined rules. Technical report, Dept of Computing Sciences, university of Alberta, Canada, 2004.
Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Closed set based discovery of small covers for association rules. In Proc. 15emes Journees Bases de Donnees Avancees, BDA, pages 361-381, 1999.
G. Piatetsky-Shapiro. Knowledge discovery in real databases. a report on the ijcai-86 workshop. AI Magazine, 11(5):68-70, 1991.
A Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. In Proc. of the 21th VLDB Conference, pages 432-444, September 1995.
H. Toivonen. Sampling large databases for association rules. In Proc. of the 22nd VLDB Conference, pages 134-145, September 1994.
A. Totohasina. Notes sur l’implication statistique: dépendance positive orientée, valeurs critiques. Technical report, SCAD, Dept de Maths-Info, Université du Québec à Montréal, 1994.
A. Totohasina. Normalization of probabilistic quality measure (in french). In Proc. French Society of Statistics (SFDS’03), XXVth Days of Statistics, volume 2, pages 958-988, Lyon 2, France, 2003.
X. Wu, C. Zhang, and S. Zhang. Mining both positive and negative rules. ACM J. Information Systems, 22(3):381-405, 2004.
M. J. Zaki and C.-J. Hsiao. CHARM: An efficient algorithm for closed itemset mining, 1999. Technical Report 99-10, Computer Science, Rensselaer Polytechnic Institute, 1999.
M. J. Zaki and M. Ogihara. Theoretical Foundations of Association Rules. In 3rd SIGMOD’98 Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD), pages 1-8, 1998.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Diatta, J., Ralambondrainy, H., Totohasina, A. (2007). Towards a Unifying Probabilistic Implicative Normalized Quality Measure for Association Rules. In: Guillet, F.J., Hamilton, H.J. (eds) Quality Measures in Data Mining. Studies in Computational Intelligence, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44918-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-540-44918-8_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44911-9
Online ISBN: 978-3-540-44918-8
eBook Packages: EngineeringEngineering (R0)