[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Incrementally Assessing Cluster Tendencies with a~Maximum Variance Cluster Algorithm

  • Conference paper
  • First Online:
Pattern Recognition and Image Analysis (IbPRIA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2652))

Included in the following conference series:

  • 928 Accesses

Abstract

A straightforward and efficient way to discover clustering tendencies in data using a recently proposed Maximum Variance Clustering algorithm is proposed. The approach shares the benefits of the plain clustering algorithm with regard to other approaches for clustering. Experiments using both synthetic and real data have been performed in order to evaluate the differences between the proposed methodology and the plain use of the Maximum Variance algorithm. According to the results obtained, the proposal constitutes an efficient and accurate alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press (1981)

    Google Scholar 

  2. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)

    Google Scholar 

  3. Hall, L.O., Ozyurt, B., Bezdek, J.C.: Clustering with a genetically optimized approach. IEEE Transactions on Evolutionary Computation 3(2), 103–112 (1999)

    Article  Google Scholar 

  4. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  5. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Computing Surveys 31(3), 265–323 (1999)

    Article  Google Scholar 

  6. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Le Cam, L.M., Neyman, J. (eds.) Proc. Fifth Berkeley Symp. Math. Statistics and Probability, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  7. Schwarz, G.: Estimating the dimension of a model. The Annals of Statistics 6 (1978)

    Article  MathSciNet  Google Scholar 

  8. Veenman, C.J., Reinders, M.J.T., Backer, E.: A maximum variance cluster algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(9), 1273–1280 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rzaḑca, K., Ferri, F.J. (2003). Incrementally Assessing Cluster Tendencies with a~Maximum Variance Cluster Algorithm. In: Perales, F.J., Campilho, A.J.C., de la Blanca, N.P., Sanfeliu, A. (eds) Pattern Recognition and Image Analysis. IbPRIA 2003. Lecture Notes in Computer Science, vol 2652. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44871-6_100

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44871-6_100

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40217-6

  • Online ISBN: 978-3-540-44871-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics