[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Principles and Pragmatics of Subtyping in PVS

  • Conference paper
Recent Trends in Algebraic Development Techniques (WADT 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1827))

Included in the following conference series:

Abstract

PVS (Prototype Verification System) is a mechanized framework for formal specification and interactive proof development. The PVS specification language is based on higher-order logic enriched with features such as predicate subtypes, dependent types, recursive datatypes, and parametric theories. Subtyping is a central concept in the PVS type system. PVS admits the definition of subtypes corresponding to nonzero integers, prime numbers, injective maps, order-preserving maps, and even empty subtypes. We examine the principles underlying the PVS subtype mechanism and its implementation and use.

This work was funded by NSF Grants No. CCR-9712383 and CCR-9509931.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andrews, P.B.: An Introduction to Logic and Type Theory: To Truth through Proof. Academic Press, New York (1986)

    MATH  Google Scholar 

  2. Barendregt, H.P.: The Lambda Calculus, its Syntax and Semantics. North-Holland, Amsterdam (1978)

    Google Scholar 

  3. Constable, R.L., Allen, S.F., Bromley, H.M., Cleaveland, W.R., Cremer, J.F., Harper, R.W., Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki, J.T., Smith, S.F.: Implementing Mathematics with the Nuprl Proof Development System. Prentice Hall, Englewood Cliffs (1986)

    Google Scholar 

  4. Cardelli, L.: Type systems. In: Handbook of Computer Science and Engineering, ch. 103, pp. 2208–2236. CRC Press, Boca Raton (1997); Available at http://www.research.digital.com/SRC

    Google Scholar 

  5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Quesada, J.F.: Maude: Specification and programming in rewriting logic. Technical Report CDRL A005, Computer Science Laboratory, SRI International (March 1999)

    Google Scholar 

  6. Church, A.: A formulation of the simple theory of types. Journal of Symbolic Logic 5, 56–68 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheng, J.H., Jones, C.B.: On the usability of logics which handle partial functions. In: Morgan, C., Woodcock, J.C.P. (eds.) Proceedings of the Third Refinement Workshop, pp. 51–69. Springer, Heidelberg (1990)

    Google Scholar 

  8. de Bruijn, N.G.: A survey of the project Automath. In: Curry, H.B. (ed.) Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 589–606. Academic Press, London (1980)

    Google Scholar 

  9. Dowek, G., Felty, A., Herbelin, H., Huet, G., Paulin-Mohring, C., Werner, B.: The COQ proof assistant user’s guide: Version 5.6. Rapports Techniques 134, INRIA, Rocquencourt, France (December 1991)

    Google Scholar 

  10. Futatsugi, K., Goguen, J., Jouanaud, J.-P., Meseguer, J.: Principles of OBJ2. In: Reid, B.K. (ed.) 12th ACM Symposium on Principles of Programming Languages, pp. 52–66. Association for Computing Machinery (1985)

    Google Scholar 

  11. Futatsugi, M., Goguen, J., Jouanaud, J.-P., Meseguer, J.: Principles of OBJ2. In: Proceedings of the 12th ACM Symposium on Principles of Programming (1985)

    Google Scholar 

  12. Frege, G.: Begriffsschrift, a formula language, modeled upon that of arithmetic, for pure thought (1967); First published (1879)

    Google Scholar 

  13. Frege, G.: Letter to Russell (1967); Written (1902)

    Google Scholar 

  14. Griffioen, D., Huisman, M.: A comparison of PVS and Isabelle/HOL. In: Grundy, J., Newey, M. (eds.) TPHOLs 1998. LNCS, vol. 1479, pp. 123–142. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  15. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving Environment for Higher-Order Logic. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  16. Gordon, M.: Notes on PVS from a HOL perspective (August 1995), Available at http://www.cl.cam.ac.uk/users/mjcg/PVS.html

  17. Jackson, P.: Undecidable typing, abstract theories and tactics in Nuprl and PVS (tutorial). In: von Wright, J., Grundy, J., Harrison, J. (eds.) TPHOLs 1996. LNCS, vol. 1125. Springer, Heidelberg (1996)

    Google Scholar 

  18. Jones, C.B.: Systematic Software Development Using VDM, 2nd edn. Prentice Hall International Series in Computer Science. Prentice Hall, Hemel Hempstead (1990)

    MATH  Google Scholar 

  19. Leveque, W.J.: Elementary Theory of Numbers. Dover, New York (1990); Originally published by Addison-Wesley (1962)

    MATH  Google Scholar 

  20. Lamport, L., Paulson, L.C.: Should your specification language be typed? ACM Transactions on Programming Languages and Systems 21(3), 133–169 (1999)

    Article  Google Scholar 

  21. Mosses, P.D.: Casl: A guided tour of its design. In: Fiadeiro, J.L. (ed.) WADT 1998. LNCS, vol. 1589, pp. 216–240. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  22. Owre, S., Rushby, J., Shankar, N., von Henke, F.: Formal verification for fault-tolerant architectures: Prolegomena to the design of PVS. IEEE Transactions on Software Engineering 21(2), 107–125 (1995)

    Article  Google Scholar 

  23. Owre, S., Shankar, N.: Abstract datatypes in PVS. Technical Report SRI-CSL-93-9R, Computer Science Laboratory, SRI International, Menlo Park, CA (December 1993); Extensively revised (June 1997); Also available as NASA Contractor Report CR-97-206264

    Google Scholar 

  24. Owre, S., Shankar, N.: The formal semantics of PVS. Technical Report SRI-CSL-97-2, Computer Science Laboratory, SRI International, Menlo Park, CA (August 1997)

    Google Scholar 

  25. Paulson, L.C.: Isabelle. LNCS, vol. 828. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  26. Rushby, J., Owre, S., Shankar, N.: Subtypes for specifications: Predicate subtyping in PVS. IEEE Transactions on Software Engineering 24(9), 709–720 (1998)

    Article  Google Scholar 

  27. Russell, B.: Letter to Frege (1967); Written (1902)

    Google Scholar 

  28. Rushby, J.: Formal methods and the certification of critical systems. Technical Report SRI-CSL-93-7, Computer Science Laboratory, SRI International, Menlo Park, CA (December 1993); Also issued under the title Formal Methods and Digital Systems Validation for Airborne Systems as NASA Contractor Report 4551 (December 1993)

    Google Scholar 

  29. Shankar, N.: Efficiently executing PVS. Project report, Computer Science Laboratory, SRI International, Menlo Park, CA (November 1999), Available at http://www.csl.sri.com/shankar/PVSeval.ps.gz

  30. Spivey, J.M.: Understanding Z: A Specification Language and its Formal Semantics. Cambridge Tracts in Theoretical Computer Science 3. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  31. van Heijenoort, J. (ed.): From Frege to Gödel. Harvard University Press, Cambridge (1967)

    MATH  Google Scholar 

  32. Whitehead, A.N., Russell, B.: Principia Mathematica, revised edition. Cambridge University Press, Cambridge (1925–1927); Three volumes. The first edition was published 1910–1913

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shankar, N., Owre, S. (2000). Principles and Pragmatics of Subtyping in PVS. In: Bert, D., Choppy, C., Mosses, P.D. (eds) Recent Trends in Algebraic Development Techniques. WADT 1999. Lecture Notes in Computer Science, vol 1827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44616-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44616-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67898-4

  • Online ISBN: 978-3-540-44616-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics