Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
D. Anderson, T. Sederberg, Steiner surface patches, IEEE Computer Graphics and Applications 5 (1985), 23-36.
L. Andersson, J. Peters, N. Stewart, Self-intersection of composite curves and surfaces, Comp. Aided Geom. Design 15 (1998), 507-527.
F. Aries, B. Mourrain, J.-P. Técourt, Algorithmic of quadratically parametrizable surfaces, to appear, (2005).
ın-Zade, A. N. Varchenko, Singularities of differentiable maps. Vol. I, vol. 82 of Monographs in Mathematics, Birkhäuser Boston Inc., Boston, MA, 1985.
F. Chen, W. Wang, Revisiting the µ-basis of a rational ruled surface, J. Symb. Comput. 36 (2003), 699-716.
F. Chen, J. Zheng, and T. Sederberg, The µ-basis of a rational ruled surface, Comp. Aided Geom. Design 18 (2001), 61-72.
A. Chtcherba, D. Kapur, Exact resultants for corner-cut unmixed multivariate polynomial systems using the dixon formulation, J. Symb. Comput. 36 (2003), 289-315.
A. Coffman, A. J. Schwartz, C. Stanton, The algebra and geometry of Steiner and other quadratically parametrizable surfaces, Comp. Aided Geom. Design 13 (1996),257-286.
D. Cox, Equations of parametric curves and surfaces via syzygies, in Symbolic computation: Solving equations in algebra, geometry, and engineering, Contemp. Math. 286 (2001), 1-20.
A. Dickenstein, I. Emiris, Multihomogeneous resultant formulae by means of complexes, J. Symb. Comp. 36 (2003), 317-342.
M. Elkadi, T. Lê, and A. Galligo, Parametrized surfaces in P3 of bidegree (1, 2), in International Symposium on Symbolic and Algebraic Computation, 2004, 141-148.
M. Elkadi, B. Mourrain, Algorithms for residues and Lojasiewicz exponents, J. Pure and Appl. Algebra, 153 (2000), 27-44.
W. Fulton, Intersection theory, Springer-Verlag, 1984.
G. Farin, Curves and surfaces for computer aided geometric design. A practical guide, Academic Press, Inc., Boston, MA, 1993.
A. Galligo, J.-P. Pavone, A sampling algorithm computing self-intersection of parametric surfaces, this book, (2005).
A. Galligo, M. Stillman, The geometry of bicubic surfaces and splines, preprint (2005).
M. Kapranov, B. Sturmfels, A. Zelevinsky, Chow polytopes and general resultants, Duke Math. J. 67 (1992), 189-218.
R. Piene, Some formulas for a surface in P3 , in Algebraic geometry (Proc. Sympos., Univ. Tromsø, Tromsø, 1977), vol. 687 of Lecture Notes in Math., Springer, Berlin, 1978, pp. 196-235.
R. Piene, Singularities of some projective rational surfaces, in Computational methods for algebraic spline surfaces, Springer, Berlin, 2005, pp. 171-182.
I. Shafarevitch, Basic Algebraic Geometry, New-York, Springer-Verlag, 1974.
B. Sturmfels, A. Zelevinsky, Multigraded resultants of Sylvester type, J. Algebra 163 (1994),115-127.
J. B. Thomassen, Self-intersection problems and approximate implicitization, in Computational methods for algebraic spline surfaces, Springer, Berlin, 2005, pp. 155-170.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Elkadi, M., Galligo, A., Le, T.H. (2006). On parametric surfaces of low degree in P3(C). In: Elkadi, M., Mourrain, B., Piene, R. (eds) Algebraic Geometry and Geometric Modeling. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33275-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-540-33275-6_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33274-9
Online ISBN: 978-3-540-33275-6
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)