[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On parametric surfaces of low degree in P3(C)

  • Conference paper
Algebraic Geometry and Geometric Modeling

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 1350 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 127.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Anderson, T. Sederberg, Steiner surface patches, IEEE Computer Graphics and Applications 5 (1985), 23-36.

    Google Scholar 

  2. L. Andersson, J. Peters, N. Stewart, Self-intersection of composite curves and surfaces, Comp. Aided Geom. Design 15 (1998), 507-527.

    Article  MATH  MathSciNet  Google Scholar 

  3. F. Aries, B. Mourrain, J.-P. Técourt, Algorithmic of quadratically parametrizable surfaces, to appear, (2005).

    Google Scholar 

  4. ın-Zade, A. N. Varchenko, Singularities of differentiable maps. Vol. I, vol. 82 of Monographs in Mathematics, Birkhäuser Boston Inc., Boston, MA, 1985.

    Google Scholar 

  5. F. Chen, W. Wang, Revisiting the µ-basis of a rational ruled surface, J. Symb. Comput. 36 (2003), 699-716.

    Article  MATH  Google Scholar 

  6. F. Chen, J. Zheng, and T. Sederberg, The µ-basis of a rational ruled surface, Comp. Aided Geom. Design 18 (2001), 61-72.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Chtcherba, D. Kapur, Exact resultants for corner-cut unmixed multivariate polynomial systems using the dixon formulation, J. Symb. Comput. 36 (2003), 289-315.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Coffman, A. J. Schwartz, C. Stanton, The algebra and geometry of Steiner and other quadratically parametrizable surfaces, Comp. Aided Geom. Design 13 (1996),257-286.

    Article  MATH  MathSciNet  Google Scholar 

  9. D. Cox, Equations of parametric curves and surfaces via syzygies, in Symbolic computation: Solving equations in algebra, geometry, and engineering, Contemp. Math. 286 (2001), 1-20.

    Google Scholar 

  10. A. Dickenstein, I. Emiris, Multihomogeneous resultant formulae by means of complexes, J. Symb. Comp. 36 (2003), 317-342.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Elkadi, T. Lê, and A. Galligo, Parametrized surfaces in P3 of bidegree (1, 2), in International Symposium on Symbolic and Algebraic Computation, 2004, 141-148.

    Google Scholar 

  12. M. Elkadi, B. Mourrain, Algorithms for residues and Lojasiewicz exponents, J. Pure and Appl. Algebra, 153 (2000), 27-44.

    Article  MATH  MathSciNet  Google Scholar 

  13. W. Fulton, Intersection theory, Springer-Verlag, 1984.

    Google Scholar 

  14. G. Farin, Curves and surfaces for computer aided geometric design. A practical guide, Academic Press, Inc., Boston, MA, 1993.

    Google Scholar 

  15. A. Galligo, J.-P. Pavone, A sampling algorithm computing self-intersection of parametric surfaces, this book, (2005).

    Google Scholar 

  16. A. Galligo, M. Stillman, The geometry of bicubic surfaces and splines, preprint (2005).

    Google Scholar 

  17. M. Kapranov, B. Sturmfels, A. Zelevinsky, Chow polytopes and general resultants, Duke Math. J. 67 (1992), 189-218.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. Piene, Some formulas for a surface in P3 , in Algebraic geometry (Proc. Sympos., Univ. Tromsø, Tromsø, 1977), vol. 687 of Lecture Notes in Math., Springer, Berlin, 1978, pp. 196-235.

    Google Scholar 

  19. R. Piene, Singularities of some projective rational surfaces, in Computational methods for algebraic spline surfaces, Springer, Berlin, 2005, pp. 171-182.

    Google Scholar 

  20. I. Shafarevitch, Basic Algebraic Geometry, New-York, Springer-Verlag, 1974.

    Google Scholar 

  21. B. Sturmfels, A. Zelevinsky, Multigraded resultants of Sylvester type, J. Algebra 163 (1994),115-127.

    Article  MATH  MathSciNet  Google Scholar 

  22. J. B. Thomassen, Self-intersection problems and approximate implicitization, in Computational methods for algebraic spline surfaces, Springer, Berlin, 2005, pp. 155-170.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Elkadi, M., Galligo, A., Le, T.H. (2006). On parametric surfaces of low degree in P3(C). In: Elkadi, M., Mourrain, B., Piene, R. (eds) Algebraic Geometry and Geometric Modeling. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33275-6_10

Download citation

Publish with us

Policies and ethics