[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Weighted Answer Sets and Applications in Intelligence Analysis

  • Conference paper
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3452))

  • 571 Accesses

Abstract

The extended answer set semantics for simple logic programs, i.e. programs with only classical negation, allows for the defeat of rules to resolve contradictions. In addition, a partial order relation on the program’s rules can be used to deduce a preference relation on its extended answer sets. In this paper, we propose a “quantitative” preference relation that associates a weight with each rule in a program. Intuitively, these weights define the “cost” of defeating a rule. An extended answer set is preferred if it minimizes the sum of the weights of its defeated rules. We characterize the expressiveness of the resulting semantics and show that it can capture negation as failure. Moreover the semantics can be conveniently extended to sequences of weight preferences, without increasing the expressiveness. We illustrate an application of the approach by showing how it can elegantly express subgraph isomorphic approximation problems, a concept often used in intelligence analysis to find specific regions of interest in a large graph of observed activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akutsu, T., Halldórsson, M.M.: On the approximation of largest common subtrees and largest common point sets. Theoretical Comp. Science 233(1-2), 33–50 (2000)

    Article  MATH  Google Scholar 

  2. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge Press (2003)

    Google Scholar 

  3. Buccafurri, F., Leone, N., Rullo, P.: Strong and weak constraints in disjunctive datalog. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS, vol. 1265, pp. 2–17. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  4. Coffman, T., Greenblatt, S., Marcus, S.: Graph-based technologies for intelligence analysis. Communications of the ACM 47(3), 45–47 (2004)

    Article  Google Scholar 

  5. Console, L., Torasso, P.: A spectrum of logical definitions of model-based diagnosis. Computational Intelligence 7(3), 133–141 (1991)

    Article  Google Scholar 

  6. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: The diagnosis frontend of the dlv system. AI Communications 12(1-2), 99–111 (1999)

    MathSciNet  Google Scholar 

  7. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Declarative problemsolving using the dlv system. In: Logic-Based Artificial Intelligence, pp. 79–103 (2000)

    Google Scholar 

  8. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the Fifth International Conference and Symposium on Logic Programming, pp. 1070–1080. MIT Press, Cambridge (1988)

    Google Scholar 

  9. Heuer, R.J.: Psychology of intelligence analysis. Center for the Study of Intelligence, Central Intelligence Agency (2001)

    Google Scholar 

  10. Lifschitz, V.: Answer set programming and plan generation. Journal of Artificial Intelligence 138(1-2), 39–54 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Syrjänen, T., Niemelä, I.: The smodels system. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 434–438. Springer, Heidelberg (2001)

    Google Scholar 

  12. Ullman, J.R.: An algorithm for subgraph isomorphism. J. of the ACM 23(1), 31–42 (1976)

    Article  MATH  Google Scholar 

  13. Van Nieuwenborgh, D., Heymans, S., Vermeir, D.: On programs with linearly ordered multiple preferences. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 180–194. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Van Nieuwenborgh, D., Vermeir, D.: Preferred answer sets for ordered logic programs. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 432–443. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Van Nieuwenborgh, D., Vermeir, D.: Ordered diagnosis. In: Y. Vardi, M., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 244–258. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. De Vos, M., Vermeir, D.: Logic programming agents playing games. In: Research and Development in Intelligent Systems XIX (ES 2002). BCS Conference Series, pp. 323–336. Springer, Heidelberg (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Van Nieuwenborgh, D., Heymans, S., Vermeir, D. (2005). Weighted Answer Sets and Applications in Intelligence Analysis. In: Baader, F., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2005. Lecture Notes in Computer Science(), vol 3452. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32275-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32275-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25236-8

  • Online ISBN: 978-3-540-32275-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics