[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Graphical Knowledge Management in Graphics Recognition Systems

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3434))

Abstract

This paper deals with the problem of graphical knowledge management (formalization, modelling, representation and operationalization) in graphics recognition systems. We present here a “generic” formalism for graphical knowledge, allowing various modellings for a given graphical shape. We use a modelling library based on this formalism for the management of our graphical knowledge. The use of this library allows to request graphical knowledge databases, according to the processings’ requirements on graphical primitives. Like this, this approach allows interoperability between processings, especially for their combination. We present a “short” system use-case of our approach to illustrate the interoperability between processings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ablameyko, S., Pridmore, T.: Machine Interpretation of Line Drawing Images. Springer, Heidelberg (2000)

    Google Scholar 

  2. Autodesk. Drawing Interchange and File Formats, Release 12. Autodesk Inc (1992)

    Google Scholar 

  3. Coüasnon, B.: Dmos: a generic document recognition method, application to an automatic generator of musical scores, mathematical formulae and table structures recognition systems. In: International Conference on Document Analysis And Recognition, ICDAR (2001)

    Google Scholar 

  4. Crevier, D., Lepage, R.: Knowledge-based image understanding systems: A survey. Computer Vision and Image Understanding (CVIU) 67(2), 161–185 (1997)

    Article  Google Scholar 

  5. Delalandre, M., Trupin, E., Ogier, J.: Local structural analysis: A primer. In: Lladós, J., Kwon, Y.-B. (eds.) GREC 2003. LNCS, vol. 3088, pp. 223–234. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Delalandre, M., Saidali, Y., Ogier, J., Trupin, E.: Adaptable vectorisation system based on strategic knowledge and xml representation use. In: Lladós, J., Kwon, Y.-B. (eds.) GREC 2003. LNCS, vol. 3088, pp. 196–207. Springer, Heidelberg (2004)

    Google Scholar 

  7. Giugno, R., Shasha, D.: Graphgrep: A fast and universal method for querying graphs. In: International Conference on Pattern Recognition, ICPR (2002)

    Google Scholar 

  8. Henderson, L., Mumford, A.: The CGM Handbook. Academic Press, London (1993)

    Google Scholar 

  9. Hilaire, X., Tombre, K.: Improving the accuracy of skeleton-based vectorisation. In: Blostein, D., Kwon, Y.-B. (eds.) GREC 2001. LNCS, vol. 2390, p. 273. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Lladós, J., Valveny, E., Sánchez, G., Martí, E.: Symbol recognition: Current advances and perspectives. In: Blostein, D., Kwon, Y.-B. (eds.) GREC 2001. LNCS, vol. 2390, p. 104. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Murray, J., Ryper, W.V.: Encyclopedia of Graphic File Formats. O’Reilly, Sebastopol (1996)

    Google Scholar 

  12. Pasternak, B., Neumann, B.: The role of taxonomy in drawing interpretation. In: International Conference on Document Analysis And Recognition, ICDAR (1995)

    Google Scholar 

  13. Pesonen, J.: Concepts and object-oriented knowledge representation. Master’s thesis, Department of Cognitive Science, University of Helsinki, Finland (2002)

    Google Scholar 

  14. Saidali, Y., Adam, S., Ogier, J., Trupin, E., Labiche, J.: Knowledge representation and acquisition for engineering document analysis. In: Lladós, J., Kwon, Y.-B. (eds.) GREC 2003. LNCS, vol. 3088, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Song, J., Su, F., Tai, C., Cai, S.: An object-oriented progressive-simplification based vectorisation system for engineering drawings: Model, algorithm and performance. Pattern Analysis and Machine Intelligence (PAMI) 24(8), 1048–1060 (2002)

    Article  Google Scholar 

  16. Sowa, J.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Cole Publishing Co (1999)

    Google Scholar 

  17. Spinrad, J.: Efficient graph representations. In: Fields Institute Monographs, vol. 19. American Mathematical Society, Providence (2003)

    Google Scholar 

  18. Suen, C., Mori, S., Kim, S., Leung, C.: Analysis and recognition of asian scripts - the state of the art. In: International Conference on Document Analysis and Recognition (ICDAR), pp. 866–878 (2003)

    Google Scholar 

  19. Tombre, K., Lamiroy, B.: Graphics recognition - from re-engineering to retrieval. In: International Conference on Document Analysis and Recognition, ICDAR (2003)

    Google Scholar 

  20. Ullman, J.: Principles of Data-Base and Knowledge Base Systems, vol. 1-2. Computer Sciences Press, Rockville (1989)

    Google Scholar 

  21. W3C. Scalar Vector Graphics (SVG) 1.0 Specification (2001)

    Google Scholar 

  22. Wenyin, L., Dori, D.: From raster to vectors: Extracting visual information from line drawings. Pattern Analysis and Applications (PAA) 2(2), 10–21 (1999)

    Article  MATH  Google Scholar 

  23. Williams, T.: Object architecture dealing with the unknown - or - type safety in a dynamically extensible class library. Technical report, Microsoft Corporation (1988)

    Google Scholar 

  24. Xue, H.: Building skeletal graphs for structural feature extraction on handwriting images. In: International Conference on Document Analysis And Recognition, ICDAR (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Delalandre, M., Trupin, E., Labiche, J., Ogier, JM. (2005). Graphical Knowledge Management in Graphics Recognition Systems. In: Brun, L., Vento, M. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2005. Lecture Notes in Computer Science, vol 3434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31988-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31988-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25270-2

  • Online ISBN: 978-3-540-31988-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics