Abstract
We consider problems of quantum mechanics of Kuryshkin which pass to eigenvalue problem of conventional quantum mechanics when passing to the limit. From the demand of experimental confirmation of the theory’s results are derived linearized equations for eigenstates of observables. The method of solving derived equations is illustrated on an example of hydrogen-like atom, for which were constructed matrices O ij (H) and O ij (H 2). An example of the solution is presented.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Moyal, J.E.: Quantum mechanics as a statistical theory. Proc. Cambr. Philos. Soc. 45, 91 (1949)
Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)
von Neumann, J.: Mathematische grundlagen der quantum mechanik. Verlag, Berlin (1932)
Weyl, H.: The theory of groups and quantum mechanics, London, p. 274 (1931)
Shirokov, Y.M.: Quantum and statistical mechanics in the phase space representation. Phys. element. particl. atom nucl. 10(1), 5–50 (1979) (in Russian)
Imre, K., et al.: Wigner method in quantum statistical mechanics. J. Math. phys. 8(5), 1097–1107 (1967)
Heller, E.J.: Wigner phase space method: Analysis for semiclassical applications. J. Chem. Phys. 65(4), 1289–1298 (1976)
Terletskii, Y.P.: On the passage of quantum mechanics to the limit of classical. Jorn. of Exper. & Theor. Phys. 7(11), 1290–1298 (1937) (in Russian)
Blokhintzev, D.I.: The Gibbs quantum ensemble and its connection with the classical ensemble. Journ. of Phys. II(1), 71–74 (1940)
Kuryshkin, V.V.: On constructing quantum operators. Izv. vuzov, ser. Phys. 11, 102–106 (1971) (in Russian)
Kuryshkin, V.V.: La mechanique quantique avec fonction non-negative de distribution dans l’espace des phases. Ann. Inst. H. Poincare T.17(1), 81–95 (1972)
Kuryshkin, V.V.: Some problems of quantum mechanics possessing a non-negative phase-space distribution function. Int. J. Theor. Phys. 7(6), 451–466 (1973)
Kuryshkin, V.V., Terletskii, Y.P.: On trends of development of quantum mechanics with non-negative QDF. Problems of statistical physics and of field theory, 70–96 (1976) (in Russian)
Kuryshkin, V.V.: Quantum distribution functions. Ph. D. Theses, 76 p. (1969) (in Russian)
Zorin, A.V., Kuryshkin, V.V., Sevastianov, L.A.: Description of the spectrum of the hydrogen-like atom. Bull. PFUR, ser. Phys. 6(1), 62–66 (1998) (in Russian)
Zorin, A.V., Sevastianov, L.A.: Mathematical modelling of the quantum mechanics with non-negative QDF. Bull. PFUR, ser. Phys. 11(1) (in Russian)
Zorin, A.V., et al.: Analytical evaluation of the matrix representation of the operators of observables. Bull. PFUR, ser. Appl. Comp. Math. (to appear) (in Russian)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zorin, A.V., Sevastianov, L.A., Belomestny, G.A. (2005). Numerical Search for the States with Minimal Dispersion in Quantum Mechanics with Non–negative Quantum Distribution Function. In: Li, Z., Vulkov, L., Waśniewski, J. (eds) Numerical Analysis and Its Applications. NAA 2004. Lecture Notes in Computer Science, vol 3401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31852-1_75
Download citation
DOI: https://doi.org/10.1007/978-3-540-31852-1_75
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24937-5
Online ISBN: 978-3-540-31852-1
eBook Packages: Computer ScienceComputer Science (R0)