[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Numerical Search for the States with Minimal Dispersion in Quantum Mechanics with Non–negative Quantum Distribution Function

  • Conference paper
Numerical Analysis and Its Applications (NAA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3401))

Included in the following conference series:

Abstract

We consider problems of quantum mechanics of Kuryshkin which pass to eigenvalue problem of conventional quantum mechanics when passing to the limit. From the demand of experimental confirmation of the theory’s results are derived linearized equations for eigenstates of observables. The method of solving derived equations is illustrated on an example of hydrogen-like atom, for which were constructed matrices O ij (H) and O ij (H 2). An example of the solution is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Moyal, J.E.: Quantum mechanics as a statistical theory. Proc. Cambr. Philos. Soc. 45, 91 (1949)

    Article  Google Scholar 

  2. Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  MATH  Google Scholar 

  3. von Neumann, J.: Mathematische grundlagen der quantum mechanik. Verlag, Berlin (1932)

    Google Scholar 

  4. Weyl, H.: The theory of groups and quantum mechanics, London, p. 274 (1931)

    Google Scholar 

  5. Shirokov, Y.M.: Quantum and statistical mechanics in the phase space representation. Phys. element. particl. atom nucl. 10(1), 5–50 (1979) (in Russian)

    MathSciNet  Google Scholar 

  6. Imre, K., et al.: Wigner method in quantum statistical mechanics. J. Math. phys. 8(5), 1097–1107 (1967)

    Article  Google Scholar 

  7. Heller, E.J.: Wigner phase space method: Analysis for semiclassical applications. J. Chem. Phys. 65(4), 1289–1298 (1976)

    Article  MathSciNet  Google Scholar 

  8. Terletskii, Y.P.: On the passage of quantum mechanics to the limit of classical. Jorn. of Exper. & Theor. Phys. 7(11), 1290–1298 (1937) (in Russian)

    Google Scholar 

  9. Blokhintzev, D.I.: The Gibbs quantum ensemble and its connection with the classical ensemble. Journ. of Phys. II(1), 71–74 (1940)

    MathSciNet  Google Scholar 

  10. Kuryshkin, V.V.: On constructing quantum operators. Izv. vuzov, ser. Phys. 11, 102–106 (1971) (in Russian)

    Google Scholar 

  11. Kuryshkin, V.V.: La mechanique quantique avec fonction non-negative de distribution dans l’espace des phases. Ann. Inst. H. Poincare T.17(1), 81–95 (1972)

    Google Scholar 

  12. Kuryshkin, V.V.: Some problems of quantum mechanics possessing a non-negative phase-space distribution function. Int. J. Theor. Phys. 7(6), 451–466 (1973)

    Article  MathSciNet  Google Scholar 

  13. Kuryshkin, V.V., Terletskii, Y.P.: On trends of development of quantum mechanics with non-negative QDF. Problems of statistical physics and of field theory, 70–96 (1976) (in Russian)

    Google Scholar 

  14. Kuryshkin, V.V.: Quantum distribution functions. Ph. D. Theses, 76 p. (1969) (in Russian)

    Google Scholar 

  15. Zorin, A.V., Kuryshkin, V.V., Sevastianov, L.A.: Description of the spectrum of the hydrogen-like atom. Bull. PFUR, ser. Phys. 6(1), 62–66 (1998) (in Russian)

    Google Scholar 

  16. Zorin, A.V., Sevastianov, L.A.: Mathematical modelling of the quantum mechanics with non-negative QDF. Bull. PFUR, ser. Phys. 11(1) (in Russian)

    Google Scholar 

  17. Zorin, A.V., et al.: Analytical evaluation of the matrix representation of the operators of observables. Bull. PFUR, ser. Appl. Comp. Math. (to appear) (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zorin, A.V., Sevastianov, L.A., Belomestny, G.A. (2005). Numerical Search for the States with Minimal Dispersion in Quantum Mechanics with Non–negative Quantum Distribution Function. In: Li, Z., Vulkov, L., Waśniewski, J. (eds) Numerical Analysis and Its Applications. NAA 2004. Lecture Notes in Computer Science, vol 3401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31852-1_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31852-1_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24937-5

  • Online ISBN: 978-3-540-31852-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics