[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Advances in Alternative Non-adjacent Form Representations

  • Conference paper
Progress in Cryptology - INDOCRYPT 2004 (INDOCRYPT 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3348))

Included in the following conference series:

Abstract

From several decades, non-adjacent form (NAF) representations for integers have been extensively studied as an alternative to the usual binary number system where digits are in {0,1}. In cryptography, the non-adjacent digit set (NADS) {–1,0,1} is used for optimization of arithmetic operations in elliptic curves. At SAC 2003, Muir and Stinson published new results on alternative digit sets: they proposed infinite families of integers x such that {0,1,x} is a NADS as well as infinite families of integers x such that {0,1,x} is not a NADS, so called a NON-NADS. Muir and Stinson also provided an algorithm that determines whether x leads to a NADS by checking if every integer \(n \epsilon [0, \lfloor \frac{-x}{3} \rfloor]\) has a {0,1,x}-NAF. In this paper, we extend these results by providing generators of NON-NADS infinite families. Furthermore, we reduce the search bound from \(\lfloor \frac{-x}{3} \rfloor\) to \(\lfloor \frac{-x}{12} \rfloor\). We introduce the notion of worst NON-NADS and give the complete characterization of such sets. Beyond the theoretical results, our contribution also aims at exploring some algorithmic aspects. We supply a much more efficient algorithm than those proposed by Muir and Stinson, which takes only 343 seconds to compute all x’s from 0 to –107 such that {0,1,x} is a NADS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Booth, A.: A signed binary multiplication technique. The Quarterly Journal Mechanics and Applied Mathematics 4, 236–240 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bosma, W.: Signed bits and fast exponentiation. Journal de théorie des nombres de Bordeaux 13(1), 27–41 (2001)

    MATH  MathSciNet  Google Scholar 

  3. De Win, E., Mister, S., Preneel, B., Wiener, M.: On the performance of signature schemes based on elliptic curves. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 252–266. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Fong, K., Hankerson, D., López, J., Menezes, A.: Field inversion and point halving revisited. IEEE Transactions on Computers 53(8), 1047–1059 (2004)

    Article  Google Scholar 

  5. Gordon, D.: A survey of fast exponentiation methods. Journal of Algorithms 27(1), 129–146 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jedwab, J., Mitchell, C.: Minimum weight modified signed-digit representations and fast exponentiation. Electronics Letters 25(17), 1171–1172 (1989)

    Article  MATH  Google Scholar 

  7. Joye, M., Tymen, C.: Compact encoding of non-adjacent forms with applications to elliptic curve cryptography. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 353–364. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Joye, M., Yen, S.: Optimal left-to-right binary signed-digit recoding. IEEE Transactions on Computers 49(7), 740–748 (2000)

    Article  Google Scholar 

  9. Koyama, K., Tsuruoka, Y.: Speeding up elliptic cryptosystems by using a signed binary window method. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 345–357. Springer, Heidelberg (1993)

    Google Scholar 

  10. Lalanne, L.: Note sur quelques propositions d’arithmologie élémentaire. Comptes rendus hebdomadaires des séances de l’Académie des sciences 11, 903–905 (1840)

    Google Scholar 

  11. Matula, D.: Basic digit sets for radix representation. Journal of the Association for Computing Machinery 29(4), 1131–1143 (1982)

    MATH  MathSciNet  Google Scholar 

  12. Okeya, K., Takagi, T.: The Width-w NAF Method Provides Small Memory and Fast Elliptic Scalar Multiplications Secure against Side Channel Attacks. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 328–343. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Okeya, K., Takagi, T.: A More Flexible Countermeasure against Side Channel Attacks Using Window Method. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 397–410. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Morain, F., Olivos, J.: Speeding up the computations on an elliptic curve using addition-subtraction chains. RAIRO – Theoretical Informatics and Applications 24(6), 531–543 (1990)

    MATH  MathSciNet  Google Scholar 

  15. Muir, J., Stinson, D.: Alternative digit sets for nonadjacent representations. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 306–319. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Muir, J., Stinson, D.: Alternative digit sets for nonadjacent representations. Technical Report CORR 2004-09, Centre for Applied Cryptographic Research, University of Waterloo, Canada (2004), http://www.cacr.math.uwaterloo.ca

  17. Reitwiesner, G.: Binary arithmetic. Advances in Computers 1, 231–308 (1960)

    Article  MathSciNet  Google Scholar 

  18. Solinas, J.: An improved algorithm for arithmetic on a family of elliptic curves. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 357–371. Springer, Heidelberg (1997)

    Google Scholar 

  19. Solinas, J.: Efficient arithmetic on Koblitz curves. Designs, Codes and Cryptography 19(2–3), 195–249 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Avoine, G., Monnerat, J., Peyrin, T. (2004). Advances in Alternative Non-adjacent Form Representations. In: Canteaut, A., Viswanathan, K. (eds) Progress in Cryptology - INDOCRYPT 2004. INDOCRYPT 2004. Lecture Notes in Computer Science, vol 3348. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30556-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30556-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24130-0

  • Online ISBN: 978-3-540-30556-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics