Abstract
This paper presents results of a study of a genetic algorithm, designed to evolve cellular automata for solving a given problem. Evolution is performed between the cell’s update-rules in a local manner, allowing for easy parallelization. As a case study, the algorithm was applied to the density classification problem: classifying any given initial configuration according to the percentage of 1-valued cells. The main result presented in this paper is an ’unlearning’ phenomenon: highly fit solutions are generated by the algorithm, only to be ’unlearned’ and completely disappear as the evolutionary run continues.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
von Neumann, J.: Theory of Self Reproducing Automata. University of Illinois Press, Illinois (1966); Edited and completed by A.W. Burks
Mitchell, M., Crutcheld, J.P., Hraber, P.T.: Evolving cellular automata to perform computations: Mechanisms and impediments. Physica D 75, 361–391 (1994)
Mitchell, M., Hraber, P.T., Crutcheld, J.P.: Revisiting the edge of chaos: Evolving cellular automata to perform computations. Complex Systems 7, 89–130 (1993)
Sloot, P.M.A., Kaandorp, J.A., Hoekstra, A.G., Overeinder, B.J.: Distributed Cellular Automata: Large Scale Simulation of Natural Phenomena. In: Zomaya, A.Y., Ercal, F., Olariu, S. (eds.) Solutions to Parallel and Distributed Computing Problems: Lessons from Biological Sciences, pp. 1–46. Computer Centre University of Tromso (2001)
Crutchfield, J.P., Mitchell, M., Das, R.: The Evolutionary Design of Collective Computation in Cellular Automata, http://www.santafe.edu/sfi/publications/wpabstract/199809080
Sipper, M.: Co-evolving non-uniform cellular automata to perform computations. Physica D 92, 193–208 (1996)
Sipper, M., Tomassini, M.: Computation in artificially evolved, non-uniform cellular automata. Theoretical Computer Science 217, 81–98 (1999)
Sipper, M.: Evolution of Parallel Cellular Programming Approach. LNCS. Springer, Heidelberg ISBN - 3-540-62613-1
Pettey, C.C.: Diffusion (Cellular) Models. In: The Handbook of Evolutionary Computation. Oxford University Press, Oxford (1997)
Land, M., Belew, R.K.: No Perfect Two-State Cellular Automata for Density Classification Exists. Physical Review Letters, 74(25), June 19 (1995)
Wainwright, R.T.: Life is universal! In: Proceedings of the 7th Conference on Winter simulation, Washington, DC, vol. 2, pp. 449–459 (1974)
Schoneveld, A., de Ronde, J.F., Sloot, P.M.A., Kaandorp, J.A.: A Parallel Cellular Genetic Algorithm Used in Finite Element Simulation. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 533–542. Springer, Heidelberg (1996)
Sloot, P.M.A., Schoneveld, A., de Ronde, J.F., Kaandorp, J.A.: Large scale simulations of complex systems Part I: conceptual framework (SFI Working Paper: 97-07-070) Santa Fe Instute for Complex studies (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Leskes, B., Sloot, P.M.A. (2004). Unlearning Phenomena in Co-evolution of Non-uniform Cellular Automata. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds) Cellular Automata. ACRI 2004. Lecture Notes in Computer Science, vol 3305. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30479-1_18
Download citation
DOI: https://doi.org/10.1007/978-3-540-30479-1_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23596-5
Online ISBN: 978-3-540-30479-1
eBook Packages: Springer Book Archive