[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Dealing with Syntactic Variation Through a Locality-Based Approach

  • Conference paper
String Processing and Information Retrieval (SPIRE 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3246))

Included in the following conference series:

Abstract

To date, attempts for applying syntactic information in the document-based retrieval model dominant have led to little practical improvement, mainly due to the problems associated with the integration of this kind of information into the model. In this article we propose the use of a locality-based retrieval model for reranking, which deals with syntactic linguistic variation through similarity measures based on the distance between words. We study two approaches whose effectiveness has been evaluated on the CLEF corpus of Spanish documents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alonso, M.A., Vilares, J., Darriba, V.M.: On the usefulness of extracting syntactic dependencies for text indexing. In: O’Neill, M., Sutcliffe, R.F.E., Ryan, C., Eaton, M., Griffith, N.J.L. (eds.) AICS 2002. LNCS (LNAI), vol. 2464, pp. 3–11. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Attar, R., Fraenkel, A.S.: Local feedback in full-text retrieval systems. Journal of the ACM 24(3), 397–417 (1977)

    Article  MATH  Google Scholar 

  3. Buckley, C.: Implementation of the SMART information retrieval system. Technical report, Department of Computer Science, Cornell University (1985), Sources available in ftp://ftp.cs.cornell.edu/pub/smart

  4. Croft, W.B.: Combining approaches to information retrieval. In: Croft, W.B. (ed.) Advances in Information Retrieval. Recent Research from the Center for Intelligent Information Retrieval. The Kluwer International Series on Information Retrieval, vol. 7, ch. 1, pp. 1–36. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  5. de Kretser, O., Moffat, A.: Effective document presentation with a localitybased similarity heuristic. In: Proc. of the 22nd annual international ACM SIGIR conference on Research and Development in Information Retrieval, Berkeley, California, USA, pp. 113–120. ACM Press, New York (1999)

    Chapter  Google Scholar 

  6. de Kretser, O., Moffat, A.: Locality-based information retrieval. In: Roddick, J.F. (ed.) Proc. of 10th Australasian Database Conference (ADC 1999), Auckland, New Zealand, January 18- 21. Australian Computer Science Communications, vol. 21, pp. 177–188, Singapore. Springer, Heidelberg (1999)

    Google Scholar 

  7. Fox, E., Shaw, J.: Combination of multiple searches. In: Harman, D.K. (ed.) NIST Special Publication 500-215: The Second Text REtrieval Conference (TREC-2), Gaithersburg, MD, USA, pp. 243–252 (1994), Department of Commerce, National Institute of Standards and Technology

    Google Scholar 

  8. Hull, D.A., Grefenstette, G., Schulze, B.M., Gaussier, E., Schütze, H., Pedersen, J.O.: Xerox TREC-5 site report: Routing, filtering, NLP, and Spanish tracks. In: Voorhees, E.M., Harman, D.K. (eds.) NIST Special Publication 500-238: The Fifth Text REtrieval Conference (TREC-5), Gaithersburg, MD, USA, pp. 167–180 (1997), Department of Commerce, National Institute of Standards and Technology

    Google Scholar 

  9. Jacquemin, C., Tzoukermann, E.: NLP for term variant extraction: synergy between morphology, lexicon and syntax. In: Natural Language Information Retrieval. Text, Speech and Language Technology, vol. 7, pp. 25–74. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  10. Kaszkiel, M., Zobel, J.: Effective ranking with arbitrary passages. Journal of the American Society of Information Science 52(4), 344–364 (2001)

    Article  Google Scholar 

  11. Koster, C.H.: Head/modifier frames for information retrieval. In: Gelbukh, A. (ed.) CICLing 2004. LNCS, vol. 2945, pp. 420–432. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Lee, J.: Analyses of multiple evidence combination. In: Proc. of SIGIR 1997, Philadelphia, PA, USA, July 27-31, pp. 267–276. ACM Press, New York (1997)

    Chapter  Google Scholar 

  13. Mitra, M., Buckley, C., Singhal, A., Cardie, C.: An analysis of statistical and syntactic phrases. In: Devroye, L., Chrisment, C. (eds.) Proc. of Computer-Aided Information Searching on the Internet (RIAO 1997), Montreal, Canada, pp. 200–214 (1997)

    Google Scholar 

  14. Perez-Carballo, J., Strzalkowski, T.: Natural language information retrieval: progress report. Information Processing and Management 36(1), 155–178 (2000)

    Article  Google Scholar 

  15. Peters, C. (ed.): Results of the CLEF 2002 Cross-Language System Evaluation Campaign, Working Notes for the CLEF 2002 Workshop, Rome, Italy (Sept. 2002), CLEF official site http://www.clef-campaign.org

  16. Rocchio, J.: Relevance feedback in information retrieval. In: Salton, G. (ed.) The SMART Retrieval System - Experiments in Automatic Document Processing, pp. 313–323. Prentice-Hall, Englewood Cliffs (1971)

    Google Scholar 

  17. Saracevic, T., Kantor, P.: A study of information seeking and retrieving. III. Searchers, searches, overlap. Journal of the American Society for Information Science 39(3), 197–216 (1988)

    Article  Google Scholar 

  18. Vilares, J., Alonso, M.A.: A grammatical approach to the extraction of index terms. In: Angelova, G., Bontcheva, K., Mitkov, R., Nicolov, N., Nikolov, N. (eds.) International Conference on Recent Advances in Natural, Borovets, Bulgaria, September. 2003, pp. 500–504 (2003)

    Google Scholar 

  19. Vilares, J., Alonso, M.A., Ribadas, F.J.: COLE experiments at CLEF 2003 Spanish monolingual track. In: To be published in Lecture Notes in Computer Science, Springer, Heidelberg (2004)

    Google Scholar 

  20. Vilares, J., Alonso, M.A., Ribadas, F.J., Vilares, M.: COLE experiments at CLEF 2002 Spanish monolingual track. In: Peters, C., Braschler, M., Gonzalo, J. (eds.) CLEF 2002. LNCS, vol. 2785, pp. 265–278. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vilares, J., Alonso, M.A. (2004). Dealing with Syntactic Variation Through a Locality-Based Approach. In: Apostolico, A., Melucci, M. (eds) String Processing and Information Retrieval. SPIRE 2004. Lecture Notes in Computer Science, vol 3246. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30213-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30213-1_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23210-0

  • Online ISBN: 978-3-540-30213-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics