Abstract
Since the work of Coron ([Co99]) we are aware of Differential Power Analysis (DPA) as a tool used by attackers of elliptic curve cryptosystems. In 2003 Ebeid and Hasan proposed a new defense in the spirit of earlier work by Oswald/Aigner and Ha/Moon. Their algorithm produces a random representation of the key in binary signed digits. This representation translates into an addition-subtraction chain for the computation of multiplication by the key (on the elliptic curve). The security rests on the fact, that addition and subtraction are indistinguishable from a power analysis viewpoint. We introduce an attack on this new defense under the assumption that SPA is possible: The attacker has a method to detect the presence of an addition or subtraction at a particular bit position of the addition-subtraction chain, while he needs not to be able to discriminate between these. We make the embedded system execute a number N (may be as few as 100) of instances of the cryptoalgorithm with the secret key. For each bit of the key we record a statistic on the occurence of a nonzero digit at this position in the (internal) binary signed digits representation of the key. If the number N of executions is large enough, the statistic can be used to estimate the respective probability (for a nonzero digit of the random binray signed digits representation of the key at this particular position). These probabilities in turn allow to deduce the secret key.
We then propose a second algorithm along the lines given by Ebeid and Hasan, which however, processes the bits in the other direction. One of us suggested that probabilistic switching between the two algorithms might provide better security. A closer analysis showed that exploiting the correlations between the power traces makes it possible to isolate a sufficient majority of executions of a particular one of the algorithms and to mount the attack.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blake, I., Seroussi, G., Smart, N.P.: Elliptic Curves in Cryptography. Cambridge University Press, Cambridge (1999)
Coron, J.S.: Resistance Against Differential Power Analysis for Elliptic Curve Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999)
Dhem, J.F., Koeune, F., Leroux, P.-A., Mestre, P., Quisquater, J.J., Willems, J.L.: A practical implementation of the Timing Attack. In: Schneier, B., Quisquater, J.-J. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 175–190. Springer, Heidelberg (2000)
Ebeid, N., Hasan, M.A.: Analysis of DPA Countermeasures Based on Randomizing the Binary Algorithm. Technical Report CORR 2003-14, Centre for Applied Cryptography Research, University of Waterloo, Canada
Ebeid, N., Hasan, M.A.: On Randomizing Private Keys to Counteract DPA Attacks. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 58–72. Springer, Heidelberg (2004)
Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001)
Gaudry, P., Hess, F., Smart, N.P.: Contructive and Destructive Facets Of Weil Descent On Elliptic Curves. J. of Cryptology 15, 19–46 (2000)
Ha, J., Moon, S.: Randomized signed-scalar multiplication of ECC to resist power attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 551–563. Springer, Heidelberg (2003)
Karlof, C., Wagner, D.: Hidden Markov Model Analysis. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 17–34. Springer, Heidelberg (2003)
Koblitz, N.: Elliptic curve cryptosystems. Math. Comp. 45, 203–209 (1987)
Kocher, P.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)
Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)
Menezes, A.J.: Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers, Dordrecht (1993)
Menezes, A.J., Qu, M.: Analysis of the Descent Attack of Gaudry, Hess and Smart. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 308–318. Springer, Heidelberg (2001)
Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Power Analysis Attacks of Modular Exponentiation in Smartcards. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 144–157. Springer, Heidelberg (1999)
Miller, V.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)
Okeya, K., Sakurai, K.: Power analysis breaks elliptic curve cryptosystems even secure against timing attacks. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 178–190. Springer, Heidelberg (2000)
Okeya, K., Sakurai, K.: On Insecurity of the Side Channel Attack Countermeasure using Addition-Subtraction Chains under Distinguishability between Addition and Doubling. In: Batten, L.M., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384, pp. 420–435. Springer, Heidelberg (2002)
Okeya, K., Han, D.: Side Channel Attack on Ha-Moon’s Countermeasure of Randomized Signed Scalar Multiplication. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 334–348. Springer, Heidelberg (2003)
Oswald, E., Aigner, M.: Randomized addition-subtraction chains as a countermeasure against power attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 39–50. Springer, Heidelberg (2001)
Schindler, W.: A Timing Attack against RSA with Chinese Remainder Theorem. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 109–124. Springer, Heidelberg (2000)
Smart, N.P.: The Discrete Logarithm Problem On Elliptic Curves Of Trace One. J. of Cryptology 12, 193–196 (1999)
Walter, C.: Longer Keys may facilitate Side Channel Attacks. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 42–57. Springer, Heidelberg (2004)
Wiener, M.J., Zuccherato, R.J.: Faster attacks on elliptic curve cryptosystems. In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 190–200. Springer, Heidelberg (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kargl, A., Wiesend, G. (2004). On Randomized Addition-Subtraction Chains to Counteract Differential Power Attacks. In: Lopez, J., Qing, S., Okamoto, E. (eds) Information and Communications Security. ICICS 2004. Lecture Notes in Computer Science, vol 3269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30191-2_22
Download citation
DOI: https://doi.org/10.1007/978-3-540-30191-2_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23563-7
Online ISBN: 978-3-540-30191-2
eBook Packages: Springer Book Archive