[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On the Minimal Assumptions of Group Signature Schemes

  • Conference paper
Information and Communications Security (ICICS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3269))

Included in the following conference series:

Abstract

One of the central lines of cryptographic research is identifying the weakest assumptions required for the construction of secure primitives. In the context of group signatures the gap between what is known to be necessary (one-way functions) and what is known to be sufficient (trapdoor permutations) is quite large. In this paper, we provide the first step towards closing this gap by showing that the existence of secure group signature schemes implies the existence of secure public-key encryption schemes. Our result shows that the construction of secure group signature schemes based solely on the existence of one-way functions is unlikely. This is in contrast to what is known for standard signature schemes, which can be constructed from any one-way function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Ateniese, G., Tsudik, G.: Group signatures Á la carte. In: ACM (ed.) 10th SODA, Baltimore, Maryland, USA, January 17-19, pp. 848–849. ACM-SIAM, New York (1999)

    Google Scholar 

  3. Ateniese, G., Tsudik, G.: Some open issues and new directions in group signatures. In: Franklin, M.K. (ed.) FC 1999. LNCS, vol. 1648, pp. 196–211. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  4. Barak, B.: How to go beyond the black-box simulation barrier. In: IEEE (ed.) 42nd FOCS, Las Vegas, USA, October 14-17, pp. 106–115. IEEE Computer Society Press, Los Alamitos (2001)

    Google Scholar 

  5. Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the shared random string model. In: IEEE (ed.) 43nd FOCS, Vancouver, Canada, November 16-19, pp. 345–355. IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

  6. Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound zeroknowledge and its applications. In: IEEE (ed.) 42nd FOCS, Las Vegas, USA, October 14-17, pp. 116–125. IEEE Computer Society Press, Los Alamitos (2001)

    Google Scholar 

  7. Bellare, M., Halevi, S., Sahai, A., Vadhan, S.P.: Many-to-one trapdoor functions and their ralation to public-key cryptosystems. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 283–298. Springer, Heidelberg (1998)

    Google Scholar 

  8. Bellare, M., Micali, S.: How to sign given any trapdoor function. Journal of the ACM 39(1), 214–233 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dynamic groups. Cryptology ePrint Archive, Report 2004/077 (2004), http://eprint.iacr.org/

  11. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

    Google Scholar 

  12. Bresson, E., Stern, J.: Efficient revocation in group signatures. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 190–206. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Camenisch, J.: Efficient and generalized group signatures. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 465–479. Springer, Heidelberg (1997)

    Google Scholar 

  14. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

    Google Scholar 

  15. Chen, L., Pedersen, T.P.: New group signature schemes. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 171–181. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  16. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on Information Theory 22, 644–654 (1978)

    Article  MathSciNet  Google Scholar 

  17. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The relationship between public key encryption and oblivious transfer. In: IEEE (ed.) 41st FOCS, Las Vegas, USA, November 12-14, pp. 325–335. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  18. Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trapdoor functions on trapdoor predicates. In: IEEE (ed.) 42nd FOCS, Las Vegas, USA, October 14-17, pp. 126–135. IEEE Computer Society Press, Los Alamitos (2001)

    Google Scholar 

  19. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity and a methodology of cryptographic protocol design. In: IEEE (ed.) 27th FOCS, pp. 174–187. IEEE Computer Society Press, Los Alamitos (1986)

    Google Scholar 

  20. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. Journal of the ACM 38(3), 691–729 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Science 28, 270–299 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  22. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  23. Halevi, S., Krawczyk, H.: Public-key cryptography and password protocols. In: ACM Transactions on Information and System Security, pp. 524–543. ACM, New York (1999)

    Google Scholar 

  24. Impagliazzo, R., Luby, M.: One-way functions are essential for complexitybased cryptography. In: IEEE (ed.) 30th FOCS, pp. 230–235. IEEE Computer Society Press, Los Alamitos (1989)

    Google Scholar 

  25. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: ACM (ed.) 21st ACM STOC, Seattle, Washington, USA, May 15-17, pp. 44–61. ACM Press, New York (1989)

    Google Scholar 

  26. Kiayias, A., Yung, M.: Extracting group signatures from traitor tracing schemes. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 630–648. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  27. Kiayias, A., Yung, M.: Group signatures: Provable security, efficient constructions and anonymity from trapdoor-holders. Cryptology ePrint Archive, Report 2004/076 (2004), http://eprint.iacr.org/

  28. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: ACM (ed.) 21st ACM STOC, Seattle, Washington, USA, May 15-17, pp. 33–43. ACM Press, New York (1989)

    Google Scholar 

  29. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryptographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  30. Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: ACM (ed.) 22nd ACM STOC, Baltimore, Maryland, USA, May 14-16, pp. 387–394. ACM Press, New York (1990)

    Google Scholar 

  31. Yao, C.: Theory and applications of trapdoor functions. In: IEEE (ed.) 23rd FOCS, pp. 80–91. IEEE Computer Society Press, Los Alamitos (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abdalla, M., Warinschi, B. (2004). On the Minimal Assumptions of Group Signature Schemes. In: Lopez, J., Qing, S., Okamoto, E. (eds) Information and Communications Security. ICICS 2004. Lecture Notes in Computer Science, vol 3269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30191-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30191-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23563-7

  • Online ISBN: 978-3-540-30191-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics