Abstract
Spanners are sparse subgraphs that preserve distances up to a given factor in the underlying graph. Recently spanners have found important practical applications in metric space searching and message distribution in networks. These applications use some variant of the so-called greedy algorithm for constructing the spanner — an algorithm that mimics Kruskal’s minimum spanning tree algorithm. Greedy spanners have nice theoretical properties, but their practical performance with respect to total weight is unknown. In this paper we give an exact algorithm for constructing minimum-weight spanners in arbitrary graphs. By using the solutions (and lower bounds) from this algorithm, we experimentally evaluate the performance of the greedy algorithm for a set of realistic problem instances.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On Sparse Spanners of Weighted Graphs. Discrete and Computational Geometry 9, 81–100 (1993)
Aneja, Y.P., Aggarwal, V., Nair, K.P.K.: Shortest Chain Subject to Side Constraints. Networks 13, 295–302 (1983)
Cai, L.: NP-Completeness of Minimum Spanner Problem. Discrete Applied Mathematics 48, 187–194 (1994)
Chandra, B.: Constructing Sparse Spanners for Most Graphs in Higher Dimension. Information Processing Letters 51, 289–294 (1994)
Chandra, B., Das, G., Narasimhan, G., Soares, J.: New Sparseness Results on Graph Spanners. International Journal of Computational Geometry and Applications 5, 125–144 (1995)
Das, G., Narasimhan, G.: A Fast Algorithm for Constructing Sparse Euclidean Spanners. Int. J. Comput. Geometry Appl. 7(4), 297–315 (1997)
Das, G., Narasimhan, G., Salowe, J.S.: A New Way to Weigh Malnourished Euclidean Graphs. In: Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 215–222 (1995)
Desrochers, M., Soumis, F.: A GeneralizedP ermanent Labelling Algorithm for the Shortest Path Problem with Time Windows. INFOR 26, 191–211 (1988)
Dodis, Y., Khanna, S.: Design Networks with Bounded Pairwise Distance. In: Proceedings of the 31th Annual ACM Symposium on Theory of Computing, pp. 750–759 (1999)
Eppstein, D.: Spanning Trees andSpanners. In: Handbook of Computational Geometry, pp. 425–461 (1999)
Farley, A.M., Zappala, D., Proskurowski, A., Windisch, K.: Spanners and Message Distribution in Networks. Discrete Applied Mathematics 137, 159–171 (2004)
Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H.Freeman and Co., San Francisco (1979)
Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Fast Greedy Algorithms for Constructing Sparse Geometric Spanners. SIAM Journal on Computing 31(5), 1479–1500 (2002)
Gudmundsson, J., Levcopoulos, C., Narasimhan, G., Smid, M.: Approximate Distance Oracles for Geometric Graphs. In: Proceedings of the 13th Annual ACMSIAM Symposium on Discrete Algorithms, pp. 828–837 (2002)
Handler, G.Y., Zang, I.: A Dual Algorithm for the ConstrainedShortest Path Problem. Networks 10, 293–310 (1980)
ILOG. ILOG CPLEX 7.0, Reference Manual. ILOG, S.A., France (2000)
Joksch, H.C.: The Shortest Route Problem with Constraints. J. Math. Anal. Appl. 14, 191–197 (1966)
Khuller, S., Raghavachari, B., Young, N.: Balancing Minimum Spanning and Shortest-Path Trees. Algorithmica 14(4), 305–321 (1995)
Narasimhan, G., Zachariasen, M.: Geometric Minimum Spanning Trees via Well-Separated Pair Decompositions. ACM Journal of Experimental Algorithmics 6 (2001)
Navarro, G., Paredes, R.: Practical Construction of Metric t-Spanners. In: Proceedings of the 5th Workshop on Algorithm Engineering and Experiments, ALENEX 2003 (2003)
Navarro, G., Paredes, R., Chávez, E.: t-spanners as a data structure for metric space searching. In: Laender, A.H.F., Oliveira, A.L. (eds.) SPIRE 2002. LNCS, vol. 2476, pp. 298–309. Springer, Heidelberg (2002)
Peleg, D., Schaffer, A.: Graph Spanners. Journal of Graph Theory 13(1), 99–116 (1989)
Rao, S.B., Smith, W.D.: Improved Approximation Schemes for Geometrical Graphs via ”Spanners” and ”Ban yans”. In: Proceedings 30th Annual ACM Symposium on Theory of Computing, pp. 540–550 (1998)
Sigurd, M., Ryan, D.: Stabilized Column Generation for Set Partitioning Optimization (in preparation) (2003)
Thienel, S.: ABACUS — A Branch-And-CUt System. PhD thesis, Universität zu Köln, Germany (1995)
Warburton, A.: Approximation of Pareto Optima in Multiple–Objective, Shortest Path Problems. Operations Research 35, 70–79 (1987)
Waxman, B.M.: Routing of Multipoint Connections. IEEE Journal on Selected Areas in Communications 6(9), 1617–1622 (1988)
Ziegelmann, M.: Constrained Shortest Paths and Related Problems. PhD thesis, Universität des Saarlandes, Saarbrücken, Germany (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sigurd, M., Zachariasen, M. (2004). Construction of Minimum-Weight Spanners. In: Albers, S., Radzik, T. (eds) Algorithms – ESA 2004. ESA 2004. Lecture Notes in Computer Science, vol 3221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30140-0_70
Download citation
DOI: https://doi.org/10.1007/978-3-540-30140-0_70
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23025-0
Online ISBN: 978-3-540-30140-0
eBook Packages: Springer Book Archive