Abstract
When objects are represented by curves in a plane, highly useful information is conveyed by significant points. In this paper, we compare the use of different mobile windows to extract dominant points of handwritten characters. The error rate and classification time using an edit distance based nearest neighbour search algorithm are compared for two different cases: string and tree representation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gersho, A., Gray, R.M.: Vector quantization and signal compression. Kluwer Academic Publishers, Dordrecht (1991)
Hastie, T., Tibshirani, R.: Classification by pairwise coupling. Technical report, Stanford University and University of Toronto (1996)
Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw Hill, NewYork (1983)
Li, X., Yeung, D.: On-line handwritten alphanumeric character recognition using dominant points in strokes. Pattern Recognition 30, 31–34 (1997)
Iñesta, J.M., Mateo, B., Sarti, M.A.: Reliable polygonal approximations of imaged read objects though dominant point detection. Pattern Recognition 31, 685–697 (1998)
Rico-Juan, J.R., Micó, L.: Comparison of AESA and LAESA search algorithms using string and tree edit distances. Pattern Recognition Letters 24(9), 1427–1436 (2003)
Sarkar, B., Roy, S., Sarkar, D.: Hierarchical representation of digitized curves though dominant point detection. Pattern Recognition Letters 24, 2869–2882 (2003)
Rico-Juan, J.R., Micó, L.: Some results about the use of tree/string edit distances in a nearest neighbour classification task. In: Perales, F.J., Campilho, A.C., Pérez, N., Sanfeliu, A. (eds.) IbPRIA 2003. LNCS, vol. 2652, pp. 821–828. Springer, Heidelberg (2003)
Rico-Juan, J.R.: Off-line cursive handwrittenword recognition based on tree extraction and an optimized classification distance. In: Torres, M.I., Sanfeliu, A. (eds.) Pattern Recognition and Image Analysis: Proceedings of the VII Symposium Nacional de Reconocimiento de Formas y Análisis de Imágenes, Bilbao, Spain, May 1999, vol. 3, pp. 15–16 (1999)
Carrasco, R.C., Forcada, M.L.: A note on the Nagendraprasad-Wang-Gupta thinning algorithm. Pattern Recognition Letters 16, 539–541 (1995)
Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees and related problems. SIAM Journal of Computing 18, 1245–1262 (1989)
Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21, 168–173 (1974)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rico-Juan, J.R., Micó, L. (2004). Finding Significant Points for a Handwritten Classification Task. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2004. Lecture Notes in Computer Science, vol 3211. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30125-7_55
Download citation
DOI: https://doi.org/10.1007/978-3-540-30125-7_55
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23223-0
Online ISBN: 978-3-540-30125-7
eBook Packages: Springer Book Archive