[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Comparison of Algorithm Design Paradigms in Active Contours for Muscle Recognition

  • Conference paper
Articulated Motion and Deformable Objects (AMDO 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3179))

Included in the following conference series:

Abstract

Active Contours constitute a widely used Pattern Recognition technique. Classical active contours are based on different methodologies. This paper reviews the algorithm paradigms most frequently utilized in active contours (variational calculus, dynamic programming and greedy algorithm) in a practical application, comparing chemical data with computer vision results. An experiment has been designed to recognize muscles from Magnetic Resonance (MR) images of Iberian ham at different maturation stages in order to calculate their volume change, using different active contour approaches. Our main findings can be summarized as two: The feasible application of active contours to recognize muscles in MR images, and the early way to automate the ripening process for Iberian ham.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amini, A.A., Weymouth, T.E., Jain, R.: Using Dynamic Programming for Solving Variational Problems in Vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 855–867 (1990)

    Article  Google Scholar 

  2. Antequera, T., López-Bote, C.J., Córdoba, J.J., García, C., Asensio, M.A., Ventanas, J., Díaz, Y.: Lipid oxidative changes in the processing of Iberian pig hams. Food Chem. 54, 105 (1992)

    Article  Google Scholar 

  3. Blake, A., Isard, M.: Active Contours. Springer, London (1998)

    Google Scholar 

  4. Caro, A., Rodríguez, P.G., Cernadas, E., Durán, M.L., Antequera, T.: Potencial Fields,as an External Force and Algorithmic Improvements in Deformable Models. Electronic Letters on Computer Vision and Image Analisys 2(1), 23–34 (2003)

    Google Scholar 

  5. Caro, A., Rodríguez, P.G., Ávila, M., Rodríguez, F., Rodríguez, F.J.: Active Contours Using Watershed Segmentation. In: IEEE 9th Int. Workshop on Systems, Signal and Image Processing, Manchester - UK, pp. 340–345 (2002)

    Google Scholar 

  6. Cava, R., Ventanas, J.: Dinámica y control del proceso de secado del jamón ibérico en condic. naturales y cámaras climatizadas, T. jamón ibérico, Mundi Prensa, 260-274 (2001)

    Google Scholar 

  7. Cohen, L.D.: On Active Contour Models and Balloons, Computer Vision. Graphics and Image Processing: Image Understanding 53(2), 211–218 (1991)

    MATH  Google Scholar 

  8. Courant, R., Hilbert, D.: Methods of Mathematical Physics. Interscience 1, New York (1953)

    Google Scholar 

  9. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour models. In: Proceedings of First International Conference on Computer Vision, London, pp. 259–269 (1987)

    Google Scholar 

  10. Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A. and Yezzi, A.: Gradient Flows and Geometric Active Contour Models, Proc. Int. Conf. on Computer Vision, Cambridge, (1995)

    Google Scholar 

  11. Larsen, O.V., Radeva, P., Martí, E.: Guidelines for Choosing Optimal Parameters of Elasticity for Snakes. In: Proc. Int. Conf. Computer Analysis and Image Proces., pp. 106–113 (1995)

    Google Scholar 

  12. Ranganath, S.: Analysis of the effects of Snake Parameters on Contour Extraction. In: Proc. Int. Conference on Automation, Robotics, and Computer Vision, pp. 451–455 (1992)

    Google Scholar 

  13. Williams, D.J., Shah, M.: A Fast Algorithm for Active Contours and Curvature Estimation, C. Vision, Graphics and Im. Proc.: Im. Understanding 55, 14–26 (1992)

    MATH  Google Scholar 

  14. Xu, C., Prince, J.L.: Gradient Vector Flow: A New External Force for Snakes. In: IEEE Proc. on Computer Vision and Pattern Recognition (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caro, A., Rodríguez, P.G., Durán, M.L., Ávila, M.M., Antequera, T., Gallardo, R. (2004). A Comparison of Algorithm Design Paradigms in Active Contours for Muscle Recognition. In: Perales, F.J., Draper, B.A. (eds) Articulated Motion and Deformable Objects. AMDO 2004. Lecture Notes in Computer Science, vol 3179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30074-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30074-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22958-2

  • Online ISBN: 978-3-540-30074-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics