Abstract
We present a method for corresponding and combining cartilage thickness readings from a population of patients using the underlying bone structure as a reference. Knee joint femoral bone and cartilage surfaces are constructed from a set of parallel slice segmentations of MR scans. Correspondence points across a population of bone surfaces are defined and refined by minimising an objective function based on the Minimum Description Length of the resulting statistical shape model. The optimised bone model defines a set of corresponding locations from which 3D measurements of the cartilage thickness can be taken and combined for a population of patients. Results are presented for a small group of patients demonstrating the feasibility and potential of the approach as a means of detecting sub-millimetre cartilage thickness changes due to disease progression.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Brechbühler, C., Gerig, G., Kubler, O.: Parametrization of closed surfaces for 3-D shape-description. Computer Vision and Image Understanding 61(2), 154–170 (1995)
Buckwalter, J.A., Stanish, W.D., Rosier, R.N., Schenck, R.C., Dennis, D.A., Coutts, R.D.: The increasing need for nonoperative treatment of patients with osteoarthritis. Clin. Orthop. Rel. Res., 36–45 (2001)
Burgkart, R., Glaser, C., Hyhlik-Durr, A., Englmeier, K.H., Reiser, M., Eckstein, F.: Magnetic resonance imaging-based assessment of cartilage loss in severe osteoarthritis — accuracy, precision, and diagnostic value. Arthritis Rheum 44, 2072–2077 (2001)
Cicuttini, F.M., Wluka, A.E., Stuckey, S.L.: Tibial and femoral cartilage changes in knee osteoarthritis. Ann. Rheum. Dis. 60, 977–980 (2001)
Cohen, Z.A., McCarthy, D.M., Kwak, S.D., Legrand, P., Fogarasi, F., Ciaccio, E.J., Ateshian, G.A.: Knee cartilage topography, thickness, and contact areas from MRI: in-vitro calibration and in-vivo measurements. Osteoarthritis and Cartilage 7, 95–109 (1999)
Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.T.: A minimum description length approach to statistical shape modelling. IEEE Trans. on Medical Imaging 21(5), 525–537 (2002)
Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.T.: 3D statistical shape models using direct optimisation of description length. In: 7th European Conference on Computer Vision, pp. 3–21 (2002)
Eckstein, F., Winzheimer, M., Hohe, J., Englmeier, K.H., Reiser, M.: Interindividual variability and correlation among morphological parameters of knee joint cartilage plates: analysis with threedimensional MR imaging. Osteoarthritis Cartilage 9, 101–111 (2001)
Gandy, S.J., Brett, A.D., Dieppe, P.A., Keen, M.J., Maciwicz, R.A., Taylor, C.J., Waterton, J.C.: No change in volume over three years in knee osteoarthritis. In: Proc. Intl. Soc. Magnetic Resonance, p. 79 (2001)
Geiger, B.: Three-dimensional modeling of human organs and its application to diagnosis and surgical planning. Thèse de doctorat en sciences, École Nationale Supérieure des Mines de Paris, France (1993)
Hohe, J., Ateshian, G., Reiser, M., Englmeier, K.H., Eckstein, F.: Surface size, curvature analysis, and assessment of knee joint incongruity with MRI in-vivo. Magnetic Resonance in Medicine 47(3), 554–561 (2002)
Martin, J.A., Buckwalter, J.A.: Aging, articular cartilage chondrocyte senescence and osteoarthritis. Biogerontology 3, 257–264 (2002)
McGibbon, C.A., Dupuy, D.E., Palmer, W.E., Krebs, D.E.: Cartilage and subchondral bone thickness distribution with MR imaging. Acad. Radiol. 5, 20–25 (1998)
Peterfy, C.G., Vandijke, C.F., Janzen, D.L., Gluer, C.C., Namba, R., Majumdar, S., Lang, P., Genant, H.K.: Quantification of articular-cartilage in the knee with pulsed saturation-transfer subtraction and fat-suppressed MR-imaging – optimization and validation. Radiology 192, 485–491 (1994)
Peterfy, C.G.: Magnetic resonance imaging in rheumatoid arthritis: Current status and future directions. Journal of Rheumatology 28(5), 1134–1142 (2001)
Raya, S.P., Udupa, J.K.: Shape-based interpolation of multidimensional objects. IEEE Trans. on Medical Imaging 9(1), 32–42 (1990)
Stammberger, T., Hohe, J., Englmeier, K.H., Reiser, M., Eckstein, F.: Elastic registration of 3D cartilage surfaces from MR image data for detecting local changes in cartilage thickness. Magn. Reson. Med. 44(4), 592–601 (2000)
Warfield, S.K., Kaus, M., Jolesz, F.A., Kikinis, R.: Adaptive, template moderated, spatially varying statistical classification. Med. Image Anal. 4(1), 43–55 (2000)
Waterton, J.C., Solloway, S., Foster, J.E., Keen, M.C., Grady, S., Middleton, B.J., Maciewicz, R.A., Watt, I., Dieppe, P.A., Taylor, C.J.: Diurnal variation in the femoral articular cartilage of the knee in young adult humans. Magnetic Resonance in Medicine 43, 126–132 (2000)
Wluka, A.E., Stuckey, S., Snaddon, J., Cicuttini, F.M.: The determinants of change in tibial cartilage volume in osteoarthritic knees. Arthritis Rheum. 46(8), 2065–2072 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Williams, T.G., Taylor, C.J., Gao, Z., Waterton, J.C. (2003). Corresponding Articular Cartilage Thickness Measurements in the Knee Joint by Modelling the Underlying Bone. In: Ellis, R.E., Peters, T.M. (eds) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2003. MICCAI 2003. Lecture Notes in Computer Science, vol 2879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39903-2_59
Download citation
DOI: https://doi.org/10.1007/978-3-540-39903-2_59
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20464-0
Online ISBN: 978-3-540-39903-2
eBook Packages: Springer Book Archive