Abstract
In our approach to spatial reasoning we use a metric description, where relations between objects are represented by parameterised homogeneous transformation matrices with nonlinear constraints on the parameters. For drawing inferences we have to multiply the matrices and to propagate the constraints. We improve a machine learning algorithm (proposed in [1]) for solving these constraints. Thereafter we present the results of combining the advantages of this enhanced machine learning approach and interval arithmetics based constraint solving.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gips, C., Hofstedt, P., Wysotzki, F.: Spatial Inference – Learning vs. Constraint Solving. In: Jarke, M., Koehler, J., Lakemeyer, G. (eds.) KI 2002. LNCS (LNAI), vol. 2479, p. 299. Springer, Heidelberg (2002)
Johnson-Laird, P.N.: Mental Models: Towards a Cognitive Science of Language, Inference and Consciousness. Cambridge University Press, Cambridge (1983)
Cohn, A., Hazarika, S.: Qualitative spatial representation and reasoning: An overview. Fundamenta Informaticae 46, 2–32 (2001)
Wiebrock, S., Wittenburg, L., Schmid, U., Wysotzki, F.: Inference and Visualization of Spatial Relations. In: Habel, C., Brauer, W., Freksa, C., Wender, K.F. (eds.) Spatial Cognition 2000. LNCS (LNAI), vol. 1849, p. 212. Springer, Heidelberg (2000)
Hickey, T., van Emden, M., Wu, H.: A Unified Framework for Interval Constraints and Interval Arithmetic. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, p. 250. Springer, Heidelberg (1998)
Hickey, T.: The Brandeis Interval Arithmetic Constraint Solver (2002), Available from http://www.cs.brandeis.edu/tim/
Hofstedt, P., Godehardt, E., Seifert, D.: A Framework for Cooperating Constraint Solvers – A Prototypic Implementation. In: Monfroy, E., Granvilliers, L. (eds.) Workshop on Cooperative Solvers in Constraint Programming – CoSolv (2001)
Nakhaeizadeh, G., Taylor, C.C. (eds.): Machine Learning and Statistics – The Interface. Wiley, Chichester (1997)
Kirsch, D., Bärmann, T., Cissée, R., Rapoport, T.: Berücksichtigung präferierter Gebiete bei der Depiktion räumlicher Relationen. In Wiebrock, S., (ed.) Anwendung des Lernalgorithmus CAL5 zur Generierung von Depiktionen und zur Inferenz von räumlichen Relationen. Report No. 2000–14, TU Berlin (2000) ISSN 1436–9915
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gips, C., Wysotzki, F. (2003). Spatial Inference – Combining Learning and Constraint Solving. In: Günter, A., Kruse, R., Neumann, B. (eds) KI 2003: Advances in Artificial Intelligence. KI 2003. Lecture Notes in Computer Science(), vol 2821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39451-8_21
Download citation
DOI: https://doi.org/10.1007/978-3-540-39451-8_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20059-8
Online ISBN: 978-3-540-39451-8
eBook Packages: Springer Book Archive