Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Banco de Información Económica. URL: http://dgcnesyp.inegi.gob.mx/bdine/ bancos.htm
Bastogne T., Noura H., Richard A., Hittinger J.M. (1997). Application of subspace methods to the identification of a winding process. In: Proceedings of the Fourth European Control Conference, Vol. 5, Brussels
Batyrshin I., Herrera-Avelar R., Sheremetov L., Suarez R. (2004). Moving approximations in time series data mining. In: Proceedings of International Conference on Fuzzy Sets and Soft Computing in Economics and Finance, FSSCEF 2004, St. Petersburg, Russia, Vol. I, pp. 62–72
Batyrshin I., Herrera-Avelar R., Sheremetov L., Suarez R. (2004). On qualitative description of time series based on moving approximations. In: Proceedings of International Conference on Fuzzy Sets and Soft Computing in Economics and Finance, FSSCEF 2004, St. Petersburg, Russia, Vol. I, 73–80
Batyrshin I., Herrera-Avelar R., Sheremetov L., Panova A. (2005). Association networks in time series data mining. - NAFIPS 2005. Soft Computing for Real World Applications, Ann Arbor, Michigan, USA, 754–759
Boverman B.L., O’Connell R.T. (1979). Time Series and Forecasting. Duxbury, Massachusetts
Das G., Lin K.I., Mannila H., Renganathan G., Smyth P. (1998). Rule Discovery from Time Series. Knowledge Discovery and Data Mining, 16–22
Economagic.com: Economic Time Series Page, URL: http://economic-charts.com/blsint.htm
Economic Research. Federal Reserve Bank of St. Luis. URL: http:// research.stlouisfed.org/fred2/categories/15/downloaddata
Everitt B.S., Landau S., Leese M. (2001). Cluster Analysis. Fourth Edition. Arnold, London
Friedman, J.H. (1997). Data Mining and Statistics: What's the Connection? URL: http://www-stat.stanford.edu/~jhf/ftp/dm-stat.ps
Keogh, E., Folias, T. (2002). The UCR Time Series Data Mining Archive. [http://www.cs.ucr.edu/~eamonn/TSDMA/index.html], University of California -Computer Science & Engineering Department, Riverside, CA
Keogh, E., Kasetty, S. (2002). On the need for time series data mining benchmarks: A survey and empirical demonstration. In: SIGKDD’02
Keogh, E., Lonardi, S., Ratanamahatana, C.A. (2004). Towards parameter-free data mining. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, WA
Last, M., Klein, Y., Kandel, A. (2001). Knowledge discovery in time series databases. IEEE Transactions on Systems, Man, and Cybernetics, 31B
Least Squares Fitting. Wolfram Research, Mathworld, URL: http://mathworld.wolfram.com/LeastSquaresFitting.html
Linear regression lines. MarketScreen. URL: http://www.marketscreen.com/help/AtoZ/default.asp?hideHF=&Num=58
Möller-Levet, C.S., Klawonn, F., Cho, K.H., & Wolkenhauer, O. (2003) Fuzzy clustering of short time-series and unevenly distributed sampling points. IDA 2003, 330–340
Sheremetov L., Rocha L., Batyrshin I. (2005) Towards a Multi-agent Dynamic Supply Chain Simulator for Analysis and Decision Support. In NAFIPS 2005. Soft Computing for Real World Applications, Ann Arbor, Michigan, USA, June 22–25, 263–286
Time Series Forecast. MarketScreen. URL: http://www.marketscreen.com/help/AtoZ/default.asp?hideHF=&Num=102
Zadeh, L.A. (1997). Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems, 90, 111–127
Zhang, P., Huang, Y., Shekhar, S., & Kumar, V. (2003). Correlation analysis of spatial time series datasets: a filter-and-refine approach. Proc. Seventh Pacific-Asia Conf. Knowledge Discovery Data Mining,(PAKDD’03), Lecture Notes in Artificial Intelligence Vol. 2637, Springer-Verlag, Seoul, Korea, 532–544
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Batyrshin, I., Herrera-Avelar, R., Sheremetov, L., Panova, A. (2007). Moving Approximation Transform and Local Trend Associations in Time Series Data Bases. In: Batyrshin, I., Kacprzyk, J., Sheremetov, L., Zadeh, L.A. (eds) Perception-based Data Mining and Decision Making in Economics and Finance. Studies in Computational Intelligence, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36247-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-540-36247-0_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-36244-9
Online ISBN: 978-3-540-36247-0
eBook Packages: EngineeringEngineering (R0)