[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Moving Approximation Transform and Local Trend Associations in Time Series Data Bases

  • Chapter
Perception-based Data Mining and Decision Making in Economics and Finance

Part of the book series: Studies in Computational Intelligence ((SCI,volume 36))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banco de Información Económica. URL: http://dgcnesyp.inegi.gob.mx/bdine/ bancos.htm

  2. Bastogne T., Noura H., Richard A., Hittinger J.M. (1997). Application of subspace methods to the identification of a winding process. In: Proceedings of the Fourth European Control Conference, Vol. 5, Brussels

    Google Scholar 

  3. Batyrshin I., Herrera-Avelar R., Sheremetov L., Suarez R. (2004). Moving approximations in time series data mining. In: Proceedings of International Conference on Fuzzy Sets and Soft Computing in Economics and Finance, FSSCEF 2004, St. Petersburg, Russia, Vol. I, pp. 62–72

    Google Scholar 

  4. Batyrshin I., Herrera-Avelar R., Sheremetov L., Suarez R. (2004). On qualitative description of time series based on moving approximations. In: Proceedings of International Conference on Fuzzy Sets and Soft Computing in Economics and Finance, FSSCEF 2004, St. Petersburg, Russia, Vol. I, 73–80

    Google Scholar 

  5. Batyrshin I., Herrera-Avelar R., Sheremetov L., Panova A. (2005). Association networks in time series data mining. - NAFIPS 2005. Soft Computing for Real World Applications, Ann Arbor, Michigan, USA, 754–759

    Google Scholar 

  6. Boverman B.L., O’Connell R.T. (1979). Time Series and Forecasting. Duxbury, Massachusetts

    Google Scholar 

  7. Das G., Lin K.I., Mannila H., Renganathan G., Smyth P. (1998). Rule Discovery from Time Series. Knowledge Discovery and Data Mining, 16–22

    Google Scholar 

  8. Economagic.com: Economic Time Series Page, URL: http://economic-charts.com/blsint.htm

  9. Economic Research. Federal Reserve Bank of St. Luis. URL: http:// research.stlouisfed.org/fred2/categories/15/downloaddata

  10. Everitt B.S., Landau S., Leese M. (2001). Cluster Analysis. Fourth Edition. Arnold, London

    Google Scholar 

  11. Friedman, J.H. (1997). Data Mining and Statistics: What's the Connection? URL: http://www-stat.stanford.edu/~jhf/ftp/dm-stat.ps

  12. Keogh, E., Folias, T. (2002). The UCR Time Series Data Mining Archive. [http://www.cs.ucr.edu/~eamonn/TSDMA/index.html], University of California -Computer Science & Engineering Department, Riverside, CA

  13. Keogh, E., Kasetty, S. (2002). On the need for time series data mining benchmarks: A survey and empirical demonstration. In: SIGKDD’02

    Google Scholar 

  14. Keogh, E., Lonardi, S., Ratanamahatana, C.A. (2004). Towards parameter-free data mining. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, WA

    Google Scholar 

  15. Last, M., Klein, Y., Kandel, A. (2001). Knowledge discovery in time series databases. IEEE Transactions on Systems, Man, and Cybernetics, 31B

    Google Scholar 

  16. Least Squares Fitting. Wolfram Research, Mathworld, URL: http://mathworld.wolfram.com/LeastSquaresFitting.html

  17. Linear regression lines. MarketScreen. URL: http://www.marketscreen.com/help/AtoZ/default.asp?hideHF=&Num=58

  18. Möller-Levet, C.S., Klawonn, F., Cho, K.H., & Wolkenhauer, O. (2003) Fuzzy clustering of short time-series and unevenly distributed sampling points. IDA 2003, 330–340

    Google Scholar 

  19. Sheremetov L., Rocha L., Batyrshin I. (2005) Towards a Multi-agent Dynamic Supply Chain Simulator for Analysis and Decision Support. In NAFIPS 2005. Soft Computing for Real World Applications, Ann Arbor, Michigan, USA, June 22–25, 263–286

    Google Scholar 

  20. Time Series Forecast. MarketScreen. URL: http://www.marketscreen.com/help/AtoZ/default.asp?hideHF=&Num=102

  21. Zadeh, L.A. (1997). Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems, 90, 111–127

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhang, P., Huang, Y., Shekhar, S., & Kumar, V. (2003). Correlation analysis of spatial time series datasets: a filter-and-refine approach. Proc. Seventh Pacific-Asia Conf. Knowledge Discovery Data Mining,(PAKDD’03), Lecture Notes in Artificial Intelligence Vol. 2637, Springer-Verlag, Seoul, Korea, 532–544

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Batyrshin, I., Herrera-Avelar, R., Sheremetov, L., Panova, A. (2007). Moving Approximation Transform and Local Trend Associations in Time Series Data Bases. In: Batyrshin, I., Kacprzyk, J., Sheremetov, L., Zadeh, L.A. (eds) Perception-based Data Mining and Decision Making in Economics and Finance. Studies in Computational Intelligence, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36247-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36247-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36244-9

  • Online ISBN: 978-3-540-36247-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics