Abstract
Dynamic surfaces arise in many applications, such as free surfaces in multiphase flows and moving interfaces in fluid-solid interactions. In many applications, an explicit surface triangulation is used to track the dynamic surfaces, posing significant challenges in adapting their meshes, especially if large curvatures and sharp features may dynamically appear or vanish as the surfaces evolve. In this paper, we present an anisotropic mesh adaptation technique to meet these challenges. Our technique strives for optimal aspect ratios of the triangulation to reduce interpolation errors and to capture geometric features based on a novel extension of the quadric-based surface analysis. Our adaptation algorithm combines the operations of vertex redistribution, edge flipping, edge contraction, and edge splitting. Experimental results demonstrate the effectiveness of our anisotropic adaptation techniques for static and dynamic surfaces.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
[1] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Desbrun. Anisotropic polygonal remeshing. ACM Trans. Graph., 22:485–493, July 2003.
[2] P. Alliez, E. Colin de Verdière, O. Devillers, and M. Isenburg. Isotropic surface remeshing. In Proc. Shape Modeling Intl., 2003.
[3] R. Almeida, P. Feijoo, A. Galeao, C. Padra, and R. Silva. Adaptive finite element computational fluid dynamics using an anisotropic error estimator. Comput. Methods Appl. Mech. Engrg., 182:379–400, 2000.
[4] E. Aulisa, S. Manservisi, and R. Scardovelli. A surface marker algorithm coupled to an area-preserving marker redistribution method for three-dimensional interface tracking. J. Comput. Phys., 197:555–584, 2004.
[5] A. Bargteil, T. Goktekin, J. O'Brien, and J. Strain. A semi-lagrangian contouring method for fluid simulation. ACM Trans. Graph., 25, 2006.
[6] H. Borouchaki and P. Frey. Adaptive triangular-quadrilateral mesh generation. Int. J. Numer. Meth. Engr., 41:915–934, 1998.
[7] F. J. Bossen and P. S. Heckbert. A pliant method for anisotropic mesh generation. In Proc. 5th Int. Meshing Roundtable, pages 63–74, Oct. 1996.
[8] G. Buscaglia and E. Dari. Anisotropic mesh optimization and its application in adaptivity. Int. J. Numer. Meth. Engr., 40:4119–4136, 1997.
[9] H. Cheng, T. Dey, H. Edelsbrunner, and J. Sullivan. Dynamic skin triangulation. Disc. Comput. Geom., 25:525–568, 2001.
[10] S.-W. Cheng, T. K. Dey, E. A. Ramos, and R. Wenger. Anisotropic surface meshing. In Proc. 17th ACM-SIAM Sympos. Discrete Algorithms, pages 202–211, 2006.
[11] E. D'Azevedo and R. Simpson. On optimal interpolation triangle incidences. SIAM J. Sci. Stat. Comput., 10:1063–1075, 1989.
[12] E. D'Azevedo and R. Simpson. On optimal triangular meshes for minimizing the gradient error. Numer. Math., 59:321–348, 1991.
[13] V. Dolejsi. Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes. Comput. Vis. Sci., 1:165–178, 1998.
[14] J. Du, B. Fix, J. Glimm, X. Jia, X. Li, Y. Li, and L. Wu. A simple package for front tracking. J. Comput. Phys., 213:613–628, 2006.
[15] Q. Du and D. Wang. Anisotropic centroidal Voronoi tessellations and their applications. SIAM J. Sci. Comput., 26:737–761, 2005.
[16] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid particle level set method for improved interface capturing. J. Comput. Phys., 183:83–116, 2002.
[17] D. Enright, F. Losasso, and R. Fedkiw. A fast and accurate semi-Lagrangian particle level set method. Comput. Struc., 83:479–490, 2005.
[18] P. Frey. About surface remeshing. In Proc. 9th Int. Meshing Roundtable, pages 123–136, Oct. 2000.
[19] W. G. Habashi, J. Dompierre, Y. Bourgault, D. Ait-Ali-Yahia, M. Fortin, and M.-G. Vallet. Anisotropic mesh adaptation: Towards user-independent, meshindependent and solver-independent CFD. Part I: General principles. Int. J. Numer. Meth. Fluids, 32:725–744, 2000.
[20] P. S. Heckbert and M. Garland. Optimal triangulation and quadric-based surface simplification. Comput. Geom., pages 49–65, 1999.
[21] X. Jiao. Face offsetting: A united approach for explicit moving interfaces. J. Comput. Phys., 2006. To appear.
[22] X. Jiao. Volume and feature preservation in surface mesh optimization. In Proc. 15th Int. Meshing Roundtable, 2006.
[23] X. Jiao and P. Alexander. Parallel feature-preserving mesh smoothing. In Proc. Int. Conf. Comput. Sci. Appl., pages 1180–1189, 2005.
[24] E. Kreyszig. Introduction to Differential Geometry and Riemannian Geometry, volume 16 of Mathematical Expositions. University of Toronto Press, 1968.
[25] F. Labelle and J. R. Shewchuk. Anisotropic Voronoi diagrams and guaranteedquality anisotropic mesh generation. In Proc. 19th Ann. ACM Sympos. Comput. Geom., pages 191–200. ACM, 2003.
[26] M. Lesoinne and C. Farhat. Geometric conservation laws for flow problems with moving boundaries and deformable meshes and their impact on aeroelastic computations. Comput. Methods Appl. Mech. Engrg, 134:71–90, 1996.
[27] R. Leveque. High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal., 33:627–665, 1996.
[28] X. Li, M. S. Shephard, and M. W. Beall. 3d anisotropic mesh adaptation by mesh modification. Comput. Methods Appl. Mech. Engrg., 194:4915–4950, 2005.
[29] S. Lo. 3-d anisotropic mesh refinement in compliance with a general metric specification. Finite Elements Anal. Design, 38:3–19, 2001.
[30] M. Meyer, M. Desbrun, P. Schroder, and A. Barr. Discrete Differential-geometry operators for triangulated 2-manifolds. In H.-C. Hege and K. Polthier, editors, Visualization and Mathematics III, pages 35–58, 2003.
[31] E. Nadler. Piecewise linear best L2 approximation on triangulations. In C. K. C. et al., editor, Approximation Theory V, pages 499–502. Academic Press, 1986.
[32] J. Oden, T. Strouboulis, and P. Devloo. Adaptive finite element methods for high-speed compressible flows. Int. J. Numer. Meth. Fluids, 7:1211–1228, 1987.
[33] Y. Ohtake, A. G. Belyaev, and H.-P. Seidel. Mesh smoothing by adaptive and anisotropic Guassian filter. In Vision, Modeling and Visualization, pages 203–210, 2002.
[34] V. Ostromoukhov, C. Donohue, and P.-M. Jodoin. Fast hierarchical importance sampling with blue noise properties. ACM Trans. Graph., 23(3):488–495, 2004.
[35] J. Peraire, M. Vahdati, K. Morgan, and O. Zienkiewicz. Adaptive remeshing for compressible flow computations. J. Comput. Phys., 72:449–466, 1987.
[36] J. R. Shewchuk. What is a good linear element? interpolation, conditioning, and quality measures. In Proc. 11th Int. Meshing Roundtable, pages 115–126, 2002.
[37] K. Shimada, A. Yamada, and T. Itoh. Anisotropic triangular meshing of parametric surfaces via close packing of ellipsoidal bubbles. In Proc. 6th Int. Meshing Roundtable, pages 375–390, 1997.
[38] R. B. Simpson. Anisotropic mesh transformations and optimal error control. Applied Numer. Math., 14:183–198, 1994.
[39] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, and Y.-J. Jan. A front-tracking method for the computations of multiphase flow. J. Comput. Phys., 169:708–759, 2001.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer
About this paper
Cite this paper
Jiao, X., Colombi, A., Ni, X., Hart, J.C. (2006). Anisotropic Mesh Adaptation for Evolving Triangulated Surfaces. In: Pébay, P.P. (eds) Proceedings of the 15th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34958-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-540-34958-7_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34957-0
Online ISBN: 978-3-540-34958-7
eBook Packages: EngineeringEngineering (R0)