[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Anisotropic Mesh Adaptation for Evolving Triangulated Surfaces

  • Conference paper
Proceedings of the 15th International Meshing Roundtable

Abstract

Dynamic surfaces arise in many applications, such as free surfaces in multiphase flows and moving interfaces in fluid-solid interactions. In many applications, an explicit surface triangulation is used to track the dynamic surfaces, posing significant challenges in adapting their meshes, especially if large curvatures and sharp features may dynamically appear or vanish as the surfaces evolve. In this paper, we present an anisotropic mesh adaptation technique to meet these challenges. Our technique strives for optimal aspect ratios of the triangulation to reduce interpolation errors and to capture geometric features based on a novel extension of the quadric-based surface analysis. Our adaptation algorithm combines the operations of vertex redistribution, edge flipping, edge contraction, and edge splitting. Experimental results demonstrate the effectiveness of our anisotropic adaptation techniques for static and dynamic surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. [1] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Desbrun. Anisotropic polygonal remeshing. ACM Trans. Graph., 22:485–493, July 2003.

    Article  Google Scholar 

  2. [2] P. Alliez, E. Colin de Verdière, O. Devillers, and M. Isenburg. Isotropic surface remeshing. In Proc. Shape Modeling Intl., 2003.

    Google Scholar 

  3. [3] R. Almeida, P. Feijoo, A. Galeao, C. Padra, and R. Silva. Adaptive finite element computational fluid dynamics using an anisotropic error estimator. Comput. Methods Appl. Mech. Engrg., 182:379–400, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  4. [4] E. Aulisa, S. Manservisi, and R. Scardovelli. A surface marker algorithm coupled to an area-preserving marker redistribution method for three-dimensional interface tracking. J. Comput. Phys., 197:555–584, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  5. [5] A. Bargteil, T. Goktekin, J. O'Brien, and J. Strain. A semi-lagrangian contouring method for fluid simulation. ACM Trans. Graph., 25, 2006.

    Google Scholar 

  6. [6] H. Borouchaki and P. Frey. Adaptive triangular-quadrilateral mesh generation. Int. J. Numer. Meth. Engr., 41:915–934, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  7. [7] F. J. Bossen and P. S. Heckbert. A pliant method for anisotropic mesh generation. In Proc. 5th Int. Meshing Roundtable, pages 63–74, Oct. 1996.

    Google Scholar 

  8. [8] G. Buscaglia and E. Dari. Anisotropic mesh optimization and its application in adaptivity. Int. J. Numer. Meth. Engr., 40:4119–4136, 1997.

    Article  MATH  Google Scholar 

  9. [9] H. Cheng, T. Dey, H. Edelsbrunner, and J. Sullivan. Dynamic skin triangulation. Disc. Comput. Geom., 25:525–568, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  10. [10] S.-W. Cheng, T. K. Dey, E. A. Ramos, and R. Wenger. Anisotropic surface meshing. In Proc. 17th ACM-SIAM Sympos. Discrete Algorithms, pages 202–211, 2006.

    Google Scholar 

  11. [11] E. D'Azevedo and R. Simpson. On optimal interpolation triangle incidences. SIAM J. Sci. Stat. Comput., 10:1063–1075, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  12. [12] E. D'Azevedo and R. Simpson. On optimal triangular meshes for minimizing the gradient error. Numer. Math., 59:321–348, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  13. [13] V. Dolejsi. Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes. Comput. Vis. Sci., 1:165–178, 1998.

    Article  MATH  Google Scholar 

  14. [14] J. Du, B. Fix, J. Glimm, X. Jia, X. Li, Y. Li, and L. Wu. A simple package for front tracking. J. Comput. Phys., 213:613–628, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  15. [15] Q. Du and D. Wang. Anisotropic centroidal Voronoi tessellations and their applications. SIAM J. Sci. Comput., 26:737–761, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  16. [16] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid particle level set method for improved interface capturing. J. Comput. Phys., 183:83–116, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  17. [17] D. Enright, F. Losasso, and R. Fedkiw. A fast and accurate semi-Lagrangian particle level set method. Comput. Struc., 83:479–490, 2005.

    Article  MathSciNet  Google Scholar 

  18. [18] P. Frey. About surface remeshing. In Proc. 9th Int. Meshing Roundtable, pages 123–136, Oct. 2000.

    Google Scholar 

  19. [19] W. G. Habashi, J. Dompierre, Y. Bourgault, D. Ait-Ali-Yahia, M. Fortin, and M.-G. Vallet. Anisotropic mesh adaptation: Towards user-independent, meshindependent and solver-independent CFD. Part I: General principles. Int. J. Numer. Meth. Fluids, 32:725–744, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  20. [20] P. S. Heckbert and M. Garland. Optimal triangulation and quadric-based surface simplification. Comput. Geom., pages 49–65, 1999.

    Google Scholar 

  21. [21] X. Jiao. Face offsetting: A united approach for explicit moving interfaces. J. Comput. Phys., 2006. To appear.

    Google Scholar 

  22. [22] X. Jiao. Volume and feature preservation in surface mesh optimization. In Proc. 15th Int. Meshing Roundtable, 2006.

    Google Scholar 

  23. [23] X. Jiao and P. Alexander. Parallel feature-preserving mesh smoothing. In Proc. Int. Conf. Comput. Sci. Appl., pages 1180–1189, 2005.

    Google Scholar 

  24. [24] E. Kreyszig. Introduction to Differential Geometry and Riemannian Geometry, volume 16 of Mathematical Expositions. University of Toronto Press, 1968.

    Google Scholar 

  25. [25] F. Labelle and J. R. Shewchuk. Anisotropic Voronoi diagrams and guaranteedquality anisotropic mesh generation. In Proc. 19th Ann. ACM Sympos. Comput. Geom., pages 191–200. ACM, 2003.

    Google Scholar 

  26. [26] M. Lesoinne and C. Farhat. Geometric conservation laws for flow problems with moving boundaries and deformable meshes and their impact on aeroelastic computations. Comput. Methods Appl. Mech. Engrg, 134:71–90, 1996.

    Article  MATH  Google Scholar 

  27. [27] R. Leveque. High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal., 33:627–665, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  28. [28] X. Li, M. S. Shephard, and M. W. Beall. 3d anisotropic mesh adaptation by mesh modification. Comput. Methods Appl. Mech. Engrg., 194:4915–4950, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  29. [29] S. Lo. 3-d anisotropic mesh refinement in compliance with a general metric specification. Finite Elements Anal. Design, 38:3–19, 2001.

    Article  MATH  Google Scholar 

  30. [30] M. Meyer, M. Desbrun, P. Schroder, and A. Barr. Discrete Differential-geometry operators for triangulated 2-manifolds. In H.-C. Hege and K. Polthier, editors, Visualization and Mathematics III, pages 35–58, 2003.

    Google Scholar 

  31. [31] E. Nadler. Piecewise linear best L2 approximation on triangulations. In C. K. C. et al., editor, Approximation Theory V, pages 499–502. Academic Press, 1986.

    Google Scholar 

  32. [32] J. Oden, T. Strouboulis, and P. Devloo. Adaptive finite element methods for high-speed compressible flows. Int. J. Numer. Meth. Fluids, 7:1211–1228, 1987.

    Article  Google Scholar 

  33. [33] Y. Ohtake, A. G. Belyaev, and H.-P. Seidel. Mesh smoothing by adaptive and anisotropic Guassian filter. In Vision, Modeling and Visualization, pages 203–210, 2002.

    Google Scholar 

  34. [34] V. Ostromoukhov, C. Donohue, and P.-M. Jodoin. Fast hierarchical importance sampling with blue noise properties. ACM Trans. Graph., 23(3):488–495, 2004.

    Article  Google Scholar 

  35. [35] J. Peraire, M. Vahdati, K. Morgan, and O. Zienkiewicz. Adaptive remeshing for compressible flow computations. J. Comput. Phys., 72:449–466, 1987.

    Article  MATH  Google Scholar 

  36. [36] J. R. Shewchuk. What is a good linear element? interpolation, conditioning, and quality measures. In Proc. 11th Int. Meshing Roundtable, pages 115–126, 2002.

    Google Scholar 

  37. [37] K. Shimada, A. Yamada, and T. Itoh. Anisotropic triangular meshing of parametric surfaces via close packing of ellipsoidal bubbles. In Proc. 6th Int. Meshing Roundtable, pages 375–390, 1997.

    Google Scholar 

  38. [38] R. B. Simpson. Anisotropic mesh transformations and optimal error control. Applied Numer. Math., 14:183–198, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  39. [39] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, and Y.-J. Jan. A front-tracking method for the computations of multiphase flow. J. Comput. Phys., 169:708–759, 2001.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Jiao, X., Colombi, A., Ni, X., Hart, J.C. (2006). Anisotropic Mesh Adaptation for Evolving Triangulated Surfaces. In: Pébay, P.P. (eds) Proceedings of the 15th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34958-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34958-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34957-0

  • Online ISBN: 978-3-540-34958-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics