Abstract
We present in this paper, a new model for document hierarchical clustering, which is inspired from the self-assembly behavior of real ants. We have simulated the way ants build complex structures with different functions by connecting themselves to each other. Ants may thus build “chains of ants” or form “drops of ants”. The artificial ants that we have defined will similarly build a tree. Each ant represents one document. The way ants move, disconnect or connect themselves depends on the similarity between these documents. The result obtained is presented as a hierarchical structure with a series of HTML files with hyperlinks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Azzag, N., Monmarché, H., Slimane, M., Venturini, G., Guinot, C.: Anttree: a new model for clustering with artificial ants. In: IEEE Congress on Evolutionary Computation, Canberra, Australia, December 08-12 (2003)
Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)
Filo, D., Yang, J.: Yahoo! (1997)
Goss, S., Deneubourg, J.-L.: Harvesting by a group of robots. In: Varela (ed.) Proceedings of the First European Conference on Artificial Life, Paris, France, pp. 195–204 (1991), Toward a Practice of Autonomous Systems
Guinot, C., Malvy, D.J.-M., Morizot, F., Tenenhaus, M., Latreille, J., Lopez, S., Tschachler, E., Dubertret, L.: Classification of healthy human facial skin. Textbook of Cosmetic Dermatology 3 (2003) (to appear)
Handl, J., Knowles, J., Dorigo, M.: On the performance of ant-based clustering. In: Abraham, A., Köppen, M., Franke, K. (eds.) Design and application of hybrid intelligent systems, Proceedings of the Third International conference on Hybrid Intelligent Systems (HIS 2003). Frontiers in Artificial intelligence and Applications, vol. 104, pp. 204–213. IOS Press, Amsterdam (2003)
Hölldobler, B., Wilson, E.-O.: The Ants. Springer, Berlin (1990)
Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall Advanced Reference Series (1988)
Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: On semi-automated web taxonomy construction. In: WebDB, Santa Barbara (May 2001)
Kuntz, P., Snyers, D., Layzell, P.: A stochastic heuristic for visualising graph clusters in a bi-dimensional space prior to partitioning. Journal of Heuritics 5(3) (October 1999)
Lioni, A., Sauwens, C., Theraulaz, G., Deneubourg, J.-L.: The dynamics of chain formation in oecophylla longinoda. Journal of Insect Behavior 14, 679–696 (2001)
Lumer, E.D., Faieta, B.: Diversity and adaptation in populations of clustering ants. In: Proceedings of the Third International Conference on Simulation of Adaptive Behaviour, pp. 501–508 (1994)
McCallum, A.K., Nigam, K., Rennie, J., Seymore, K.: Automating the construction of internet portals with machine learning. Information Retrieval 3(2), 127–163 (2000)
Salton, G., Buckley, C.: Term weighting approaches in automatic text retrieval. information processing and management 25, 513–523 (1988)
Sanderson, M., Bruce Croft, W.: Deriving concept hierarchies from text. In: Research and Development in Information Retrieval, pp. 206–213 (1999)
Christian Sauwens. Étude de la dynamique d’auto-assemblage chez plusieurs espèces de fourmis. Thèse de doctorat, Université libre de bruxelles (2000)
Theraulaz, G., Bonabeau, E., Sauwens, C., Deneubourg, J.-L., Lioni, A., Libert, F., Passera, L., Solé, R.-V.: Model of droplet formation and dynamics in the argentine ant (linepithema humile mayr). Bulletin of Mathematical Biology (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Azzag, H., Guinot, C., Venturini, G. (2004). How to Use Ants for Hierarchical Clustering. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds) Ant Colony Optimization and Swarm Intelligence. ANTS 2004. Lecture Notes in Computer Science, vol 3172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28646-2_34
Download citation
DOI: https://doi.org/10.1007/978-3-540-28646-2_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22672-7
Online ISBN: 978-3-540-28646-2
eBook Packages: Springer Book Archive