Abstract
The spi calculus is an executable model for the description and analysis of cryptographic protocols. Security objectives like secrecy and authenticity can be formulated as equations between spi calculus terms, where equality is interpreted as a contextual equivalence.
One problem with verifying contextual equivalences for messagepassing process calculi is the infinite branching on process input. In this paper, we propose a general symbolic semantics for the spi calculus, where an input prefix gives rise to only one transition.
To avoid infinite quantification over contexts, non-contextual concrete bisimulations approximating barbed equivalence have been defined. We propose a symbolic bisimulation that is sound with respect to barbed equivalence, and brings us closer to automated bisimulation checks.
Supported by the Swiss National Science Foundation, grant No. 21-65180.1.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abadi, M., Fournet, C.: Mobile Values, New Names, and Secure Communication. In: Proc. of POPL 2001, pp. 104–115 (2001)
Abadi, M., Gordon, A.D.: A Bisimulation Method for Cryptographic Protocols. Nordic Journal of Computing 5(4), 267–303 (1998)
Abadi, M., Gordon, A.D.: A Calculus for Cryptographic Protocols: The Spi Calculus. Information and Computation 148(1), 1–70 (1999)
Amadio, R.M., Lugiez, D.: On the Reachability Problem in Cryptographic Protocols. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 380–394. Springer, Heidelberg (2000)
Boreale, M., De Nicola, R.: A Symbolic Semantics for the π-Calculus. Information and Computation 126(1), 34–52 (1996)
Boreale, M., De Nicola, R., Pugliese, R.: Proof Techniques for Cryptographic Processes. SIAM Journal on Computing 31(3), 947–986 (2002)
Borgström, J., Nestmann, U.: On Bisimulations for the π Calculus. In: Kirchner, H., Ringeissen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 287–303. Springer, Heidelberg (2002)
Boreale, M.: Symbolic Trace Analysis of Cryptographic Protocols. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 667–681. Springer, Heidelberg (2001)
Cortier, V.: Vérification automatique des protocoles cryptographiques. PhD thesis, École Normale Supérieure de Cachan (2003)
Comon, H., Shmatikov, V.: Is it possible to decide whether a cryptographic protocol is secure or not? Journal of Telecommunications and Information Technology 4, 5–15 (2002)
Durante, L., Sisto, R., Valenzano, A.: Automatic testing equivalence verification of π-calculus specifications. ACM Transactions on Software Engineering and Methodology 12(2), 222–284 (2003)
Fiore, M., Abadi, M.: Computing Symbolic Models for Verifying Cryptographic Protocols. In: 14th IEEE Computer Security Foundations Workshop, pp. 160–173 (2001)
Hennessy, M., Lin, H.: Symbolic Bisimulations. Theoretical Computer Science 138(2), 353–389 (1995)
Huima, A.: Efficient Infinite-State Analysis of Security Protocols. In: FLOC Workshop on Formal Methods and Security Protocols (1999)
Hüttel, H.: Deciding Framed Bisimilarity. In: Proc. of INFINITY (2002)
Sangiorgi, D.: A Theory of Bisimulation for the π-calculus. Acta Informatica 33, 69–97 (1996)
Victor, B., Moller, F.: The Mobility Workbench — A Tool for the π-Calculus. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 428–440. Springer, Heidelberg (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Borgström, J., Briais, S., Nestmann, U. (2004). Symbolic Bisimulation in the Spi Calculus. In: Gardner, P., Yoshida, N. (eds) CONCUR 2004 - Concurrency Theory. CONCUR 2004. Lecture Notes in Computer Science, vol 3170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28644-8_11
Download citation
DOI: https://doi.org/10.1007/978-3-540-28644-8_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22940-7
Online ISBN: 978-3-540-28644-8
eBook Packages: Springer Book Archive