[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Integrating Feature Information for Improving Accuracy of Collaborative Filtering

  • Conference paper
PRICAI 2004: Trends in Artificial Intelligence (PRICAI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3157))

Included in the following conference series:

  • 1603 Accesses

Abstract

Collaborative filtering (CF) has been widely used and successfully applied to recommend items in practical applications. However, the collaborative filtering has two inherent problems: data sparseness and the cold- start problems. In this paper, we propose a method of integrating additional feature information of users and items into CF to overcome those difficulties and improve the accuracy of recommendation. We apply a two-pass method, first filling in unknown preference values, then generating the top-N recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, H., Kim, J., Herlocker, J.L. (2004). Integrating Feature Information for Improving Accuracy of Collaborative Filtering. In: Zhang, C., W. Guesgen, H., Yeap, WK. (eds) PRICAI 2004: Trends in Artificial Intelligence. PRICAI 2004. Lecture Notes in Computer Science(), vol 3157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28633-2_136

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28633-2_136

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22817-2

  • Online ISBN: 978-3-540-28633-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics