Abstract
Collaborative filtering (CF) has been widely used and successfully applied to recommend items in practical applications. However, the collaborative filtering has two inherent problems: data sparseness and the cold- start problems. In this paper, we propose a method of integrating additional feature information of users and items into CF to overcome those difficulties and improve the accuracy of recommendation. We apply a two-pass method, first filling in unknown preference values, then generating the top-N recommendations.
Similar content being viewed by others
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kim, H., Kim, J., Herlocker, J.L. (2004). Integrating Feature Information for Improving Accuracy of Collaborative Filtering. In: Zhang, C., W. Guesgen, H., Yeap, WK. (eds) PRICAI 2004: Trends in Artificial Intelligence. PRICAI 2004. Lecture Notes in Computer Science(), vol 3157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28633-2_136
Download citation
DOI: https://doi.org/10.1007/978-3-540-28633-2_136
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22817-2
Online ISBN: 978-3-540-28633-2
eBook Packages: Springer Book Archive