[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

STREAM: The Stanford Data Stream Management System

  • Chapter
  • First Online:
Data Stream Management

Abstract

Traditional database management systems are best equipped to run one-time queries over finite stored data sets. However, many modern applications such as network monitoring, financial analysis, manufacturing, and sensor networks require long-running, or continuous, queries over continuous unbounded streams of data. In the STREAM project at Stanford, we are investigating data management and query processing for this class of applications. As part of the project we are building a general-purpose prototype Data Stream Management System (DSMS), also called STREAM, that supports a large class of declarative continuous queries over continuous streams and traditional stored data sets. The STREAM prototype targets environments where streams may be rapid, stream characteristics and query loads may vary over time, and system resources may be limited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 43.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 54.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M.K. Aguilera, R.E. Strom, D.C. Sturman, M. Astley, T.D. Chandra, Matching events in a content-based subscription system, in Proc. of the 18th Annual ACM Symp. on Principles of Distributed Computing (1999), pp. 53–61

    Google Scholar 

  2. A. Arasu, B. Babcock, S. Babu, J. McAlister, J. Widom, Characterizing memory requirements for queries over continuous data streams. ACM Trans. Database Syst. 29(1), 1–33 (2004)

    Article  Google Scholar 

  3. A. Arasu, S. Babu, J. Widom, The CQL continuous query language: semantic foundations and query execution. VLDB J. 15(2), 121–142 (2006)

    Article  Google Scholar 

  4. B. Babcock, S. Babu, M. Datar, R. Motwani, Chain: operator scheduling for memory minimization in data stream systems, in Proc. of the 2003 ACM SIGMOD Intl. Conf. on Management of Data (2003), pp. 253–264

    Chapter  Google Scholar 

  5. B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom, Models and issues in data stream systems, in Proc. of the 21st ACM SIGACT–SIGMOD–SIGART Symp. on Principles of Database Systems (2002), pp. 1–16

    Google Scholar 

  6. B. Babcock, M. Datar, R. Motwani, Load shedding for aggregation queries over data streams, in Proc. of the 20th Intl. Conf. on Data Engineering (2004)

    Google Scholar 

  7. S. Babu, R. Motwani, K. Munagala, I. Nishizawa, J. Widom, Adaptive ordering of pipelined stream filters, in Proc. of the 2004 ACM SIGMOD Intl. Conf. on Management of Data (2004)

    Google Scholar 

  8. S. Babu, K. Munagala, J. Widom, R. Motwani, Adaptive caching for continuous queries, in Proc. of the 21st Intl. Conf. on Data Engineering (2005), pp. 118–129

    Google Scholar 

  9. S. Babu, U. Srivastava, J. Widom, Exploiting \(k\)-constraints to reduce memory overhead in continuous queries over data streams. ACM Trans. Database Syst. 29(3), 545–580 (2004)

    Article  Google Scholar 

  10. S. Babu, J. Widom, StreaMon: an adaptive engine for stream query processing, in Proc. of the 2004 ACM SIGMOD Intl. Conf. on Management of Data (2004). Demonstration description

    Google Scholar 

  11. B.H. Bloom, Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)

    Article  MATH  Google Scholar 

  12. K. Chakrabarti, M.N. Garofalakis, R. Rastogi, K. Shim, Approximate query processing using wavelets, in Proc. of the 26th Intl. Conf. on Very Large Data Bases (2000), pp. 111–122

    Google Scholar 

  13. J. Gehrke (ed.), Data stream processing. IEEE Comput. Soc. Bull. Technical Comm. Database Eng. 26(1) (2003)

    Google Scholar 

  14. F. Fabret, H.-.A. Jacobsen, F. Llirbat, J. Pereira, K.A. Ross, D. Shasha, Filtering algorithms and implementation for very fast publish/subscribe, in Proc. of the 2000 ACM SIGMOD Intl. Conf. on Management of Data (2001), pp. 115–126

    Google Scholar 

  15. R.E. Gruber, B. Krishnamurthy, E. Panagos, READY: a high performance event notification system, in Proc. of the 16th Intl. Conf. on Data Engineering (2000), pp. 668–669

    Google Scholar 

  16. W. Hoeffding, Probability inequalities for sums of bounded random variables. J. Am. Stat. Soc. 58(301), 13–30 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  17. U. Srivastava, J. Widom, Flexible time management in data stream systems, in Proc. of the 23rd ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems (2004)

    Google Scholar 

  18. N. Tatbul, U. Cetintemel, S.B. Zdonik, M. Cherniak, M. Stonebraker, Load shedding in a data stream manager, in Proc. of the 29th Intl. Conf. on Very Large Data Bases (2003), pp. 309–320

    Google Scholar 

  19. N. Thaper, S. Guha, P. Indyk, N. Koudas, Dynamic multidimensional histograms, in Proc. of the 2002 ACM SIGMOD Intl. Conf. on Management of Data (2002), pp. 428–439

    Chapter  Google Scholar 

  20. D. Thomas, R. Motwani, Caching queues in memory buffers, in Proc. of the 15th Annual ACM–SIAM Symp. on Discrete Algorithms (2004)

    Google Scholar 

  21. P.A. Tucker, D. Maier, T. Sheard, L. Fegaras, Exploiting punctuation semantics in continuous data streams. IEEE Trans. Knowl. Data Eng. 15(3), 555–568 (2003)

    Article  Google Scholar 

  22. S. Viglas, J.F. Naughton, J. Burger, Maximizing the output rate of multi-way join queries over streaming information sources, in Proc. of the 29th Intl. Conf. on Very Large Data Bases (2003), pp. 285–296

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Widom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arasu, A. et al. (2016). STREAM: The Stanford Data Stream Management System. In: Garofalakis, M., Gehrke, J., Rastogi, R. (eds) Data Stream Management. Data-Centric Systems and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28608-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28608-0_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28607-3

  • Online ISBN: 978-3-540-28608-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics