Abstract
Now that answer set programming has emerged as a practical tool for knowledge representation and declarative problem solving there has recently been a revival of interest in transformation rules that allow for programs to be simplified and perhaps even reduced to programs of ‘lower’ complexity. Although it has been known for some that there is a maximal monotonic logic, denoted by N 5, with the property that its valid (equivalence preserving) inference rules provide valid transformations of programs under answer set semantics, with few exceptions this fact has not really been exploited in the literature. The paper studies some new transformation rules using N 5-inference to simplify extended disjunctive logic programs known to be strongly equivalent to programs with nested expressions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Avellone, A., Ferrari, M., Miglioli, P.: Duplication-Free Tableau Calculi and Related Cut- Free Sequent Calculi for the Interpolable Propositional Intermediate Logics. Logic Journal of the IGPL 7(4), 447–480 (1999)
Balduccini, M., Gelfond, M., Watson, R., Noguiera, M.: The USA-Advisor: A case study in answer set planning. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, p. 439. Springer, Heidelberg (2001)
Baral, C.: Knowlewdge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)
Brass, S., Dix, J.: Semantics of (Disjunctive) Logic Programs Based on Partial Evaluation. Journal of Logic Programming 40(1), 1–46 (1999)
Calimeri, F., Galizia, S., Ruffolo, M., Rullo, P.: Enhancing Disjunctive Logic Programming for Ontology Specification. In: Proceedings AGP 2003 (2003)
van Dalen, D.: Intuitionistic logic. In: Handbook of Philosophical Logic, Dordrecht. Alternatives in Classical Logic, vol. III, D. Reidel Publishing Co. (1986)
van Dantzig, D.: On the Principles of Intuitionistic and Affirmative Mathematics. Indagationes Mathematicae 9, 506–517 (1947)
Dietrich, J.: Inferenzframes. Doctoral Dissertation, University of Leipzig (1995)
Dummett, M.: Elements of Intuitionism. Clarendon Press, Oxford (1977)
Eiter, T., Fink, M.: Uniform equivalence of logic programs under the stable model semantics. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 224–238. Springer, Heidelberg (2003)
Eiter, T., et al.: Simplifying Logic Programs under Uniform and Strong Equivalence. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 87–99. Springer, Heidelberg (2003)
Eiter, T., Gottlob, G.: On the Computational Cost of Disjunctive Logic Programming: Propositional Case. Annals of Mathematics and Artificial Intelligence 15(3-4), 289–323 (1995)
Gödel, K.: Zum intuitionistischen aussagenkalkül. Anzeiger der Akademie der Wissenschaften Wien, mathematisch, naturwissenschaftliche Klasse 69, 65–66 (1932)
Gurevich, Y.: Intuitionistic logic with strong negation. Studia Logica 36(1-2), 49–59 (1977)
Heyting: Die formalen regeln der intuitionistischen logik. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse, pp. 42–56 (1930)
De Jongh, D., Hendriks, L.: Characterization of strongly equivalent logic programs in intermediate logics. Theory and Practice of Logic Programming 3(3), 259–270 (2003)
Janhunen, T.: On the Effect of Default Negation on the Expressiveness of Disjunctive Rules. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 93–106. Springer, Heidelberg (2001)
Janhumen, T., Niemelä, I., Seipel, D., Simons, P., You, J.-H.: Unfolding partiality and disjunctions in stable model semantics. CoRR: cs.AI/0303009 (March 2003)
Kracht, M.: On extensions of intermediate logics by strong negation. Journal of Philosophical Logic 27(1), 49–73 (1998)
Leone, N., Pfeifer, G., Faber, W., Eiter, T.: G, Gottlob, S. Perri and F. Scarcello. The DLV System for Knowledge Representation and Reasoning. CoRR: cs.AI/0211004 (September 2003)
Lifschitz, V.: Foundations of Logic Programming. In: Brewka, G. (ed.) Principles of Knowledge Representation, pp. 69–128. CSLI Publications, Stanford (1996)
Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transactions on Computational Logic 2(4), 526–541 (2001)
Lifschitz, V., Tang, L., Turner, H.: Nested Expressions in Logic Programs. Annals of Mathematics and Artificial Intelligence 25(3-4), 369–389 (1999)
Mundici, D.: Satisfiability in Many-Valued Sentential Logic is NP-complete. Theoretical Computer Science 52(1-2), 145–153 (1987)
Osorio, M., Navarro, J., Arrazola, J.: Equivalence in Answer Set Programming. In: Pettorossi, A. (ed.) LOPSTR 2001. LNCS, vol. 2372, pp. 57–75. Springer, Heidelberg (2002)
Pearce, D.: Nonmonotonicity and Answer Set Inference. In: Marek, V.W., Truszczyński, M., Nerode, A. (eds.) LPNMR 1995. LNCS, vol. 928, pp. 372–387. Springer, Heidelberg (1995)
Pearce, D.: A new logical characterization of stable models and answer sets. In: Dix, J., Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS, vol. 1216, pp. 57–70. Springer, Heidelberg (1997)
Pearce, D., de Guzmán, I.P., Valverde, A.: A tableau calculus for equilibrium entailment. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS, vol. 1847, pp. 352–367. Springer, Heidelberg (2000)
Pearce, D., de Guzmán, I.P., Valverde, A.: Computing equilibrium models using signed formulas. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 688–702. Springer, Heidelberg (2000)
Pearce, D., Tompits, H., Woltran, S.: Encodings for Equilibrium Logic and Logic Programs with Nested Expressions. In: Brazdil, P.B., Jorge, A.M. (eds.) EPIA 2001. LNCS (LNAI), vol. 2258, pp. 306–320. Springer, Heidelberg (2001)
Pearce, D., Sarsakov, V., Schaub, T., Tompits, H., Woltran, S.: A Polynomial Translation of Logic Programs with Nested Expressions into Disjunctive Logic Programs: Preliminary Report. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 405–420. Springer, Heidelberg (2002)
Pearce, D., Valverde, A.: Uniform Equivalence for Equilibrium Logic and Logic Programs. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 194–206. Springer, Heidelberg (2003)
Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intellingence 138(1-2), 181–234 (2002)
Turner, H.: Strong equivalence for logic programs and default theories (made easy). In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 81–92. Springer, Heidelberg (2001)
Vakarelov, D.: Notes on N-Lattices and Constructive Logic with Strong Negation. Studia Logica 36(1-2), 109–125 (1977)
Vorob’ev, N.N.: A constructive propositional calculus with strong negation (in Russian). Doklady Akademii Nauk SSR 85, 465–468 (1952)
Vorob’ev, N.N.: The problem of deducibility in constructive propositional calculus with strong negation (in Russian). Doklady Akademii Nauk SSR 85, 689–692 (1952)
Wang, K., Zhou, L.: Comparisons and Computation of Well-founded Semantics for Disjunctive Logic Programs. ACM Transactions on Computational Logic (to appear)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pearce, D. (2004). Simplifying Logic Programs Under Answer Set Semantics. In: Demoen, B., Lifschitz, V. (eds) Logic Programming. ICLP 2004. Lecture Notes in Computer Science, vol 3132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27775-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-27775-0_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22671-0
Online ISBN: 978-3-540-27775-0
eBook Packages: Springer Book Archive