[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Classifier Ensembles for Changing Environments

  • Conference paper
Multiple Classifier Systems (MCS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3077))

Included in the following conference series:

Abstract

We consider strategies for building classifier ensembles for non-stationary environments where the classification task changes during the operation of the ensemble. Individual classifier models capable of online learning are reviewed. The concept of ”forgetting” is discussed. Online ensembles and strategies suitable for changing environments are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aha, D., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine Learning 6, 37–66 (1991)

    Google Scholar 

  2. Bezdek, J.C., Kuncheva, L.I.: Nearest prototype classifier designs: An experimental study. International Journal of Intelligent Systems 16(12), 1445–1473 (2001)

    Article  MATH  Google Scholar 

  3. Blum, A.: Empirical support for Winnow and weighted-majority based algorithms: results on a calendar scheduling domain. In: Proc. 12th International Conference on Machine Learning, pp. 64–72. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  4. Breiman, L.: Pasting small votes for classification in large databases and on-line. Machine Learning 36, 85–103 (1999)

    Article  Google Scholar 

  5. Dasarathy, B.V.: Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. IEEE Computer Society Press, Los Alamitos (1990)

    Google Scholar 

  6. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Knowledge Discovery and Data Mining, pp. 71–80 (2000)

    Google Scholar 

  7. Domingos, P., Hulten, G.: A general framework for mining massive data streams. Journal of Computational and Graphical Statistics 12, 945–949 (2003)

    Article  MathSciNet  Google Scholar 

  8. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ganti, V., Gehrke, J., Ramakrishnan, R.: Mining data streams under block evolution. ACM SIGKDD Explorations Newsletter 3, 1–10 (2002)

    Article  Google Scholar 

  10. Hart, P.E.: The condensed nearest neighbor rule. IEEE Transactions on Information Theory 16, 515–516 (1968)

    Article  Google Scholar 

  11. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proc. 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 97–106. ACM Press, New York (2001)

    Chapter  Google Scholar 

  12. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Computation 3, 79–87 (1991)

    Article  Google Scholar 

  13. Kelly, M.G., Hand, D.J., Adams, N.M.: The impact of changing populations on classifier performance. In: Proc. 5th ACM SIGDD International Conference on Knowledge Discovery and Data Mining, pp. 367–371. ACM Press, San Diego (1999)

    Chapter  Google Scholar 

  14. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, New York (2000)

    Google Scholar 

  15. Lim, C.P., Harrison, R.E.: Online pattern classification with multiple neural network systems: An experimental study. IEEE Transactions on Systems, Man, and Cybernetics 35, 235–247 (2003)

    Google Scholar 

  16. Littlestone, N.: Learning quickly when irrelevant attributes abound: A new linear threshold algorithm. Machine Learning 2, 285–318 (1988)

    Google Scholar 

  17. Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Inform. Computation 108, 212–261 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Markou, M., Singh, S.: Novelty detection: a review. Part 1: statistical approaches. Signal Processing 83(12), 2481–2497 (2003)

    Article  MATH  Google Scholar 

  19. Oza, N.C.: Online Ensemble Learning. PhD thesis, University of California, Berkeley (2001)

    Google Scholar 

  20. Salganicoff, M.: Density-adaptive learning and forgetting. In: Proceedings of the 10th International Conference on Machine Learning, pp. 276–283 (1993)

    Google Scholar 

  21. Street, W.N., Kim, Y.S.: A streaming ensemble algorithm (SEA) for large-scale classification. In: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 377–382. ACM Press, New York (2001)

    Chapter  Google Scholar 

  22. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept drifting data streams using ensemble classifiers. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 226–235. ACM Press, New York (2003)

    Chapter  Google Scholar 

  23. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Machine Learning 23, 69–101 (1996)

    Google Scholar 

  24. Widmer, G., Kubat, M.: Special Issue on Context Sensitivity and Concept Drift. Machine Learning 32 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuncheva, L.I. (2004). Classifier Ensembles for Changing Environments. In: Roli, F., Kittler, J., Windeatt, T. (eds) Multiple Classifier Systems. MCS 2004. Lecture Notes in Computer Science, vol 3077. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25966-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25966-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22144-9

  • Online ISBN: 978-3-540-25966-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics