[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Proving Termination with Adornments

  • Conference paper
Logic Based Program Synthesis and Transformation (LOPSTR 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3018))

  • 190 Accesses

Abstract

Termination is well-known to be one of the important aspects of program correctness. Logic programming provides a framework with a strong theoretical basis for tackling this problem. However, due to the declarative formulation of programs, the danger of non-termination may increase. As a result, termination analysis received considerable attention in logic programming. Recently, the study of termination of numerical programs led to the emerging of the adorning technique [7]. This technique implements the well-known “divide et impera” strategy by distinguishing between different subsets of values for variables, and deriving termination proofs based on these subsets. In this paper we generalise this technique and discuss its applicability to the domain of terms (the Herbrand domain).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bruynooghe, M., Codish, M., Genaim, S., Vanhoof, W.: Reuse of results in termination analysis of typed logic programs. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 477–492. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Bruynooghe, M., De Schreye, D., Martens, B.: A general criterion for avoiding infinite unfolding during partial deduction. New Generation Computing 11(1), 47–79 (1992)

    Article  MATH  Google Scholar 

  3. Dershowitz, N., Hoot, C.: Topics in termination. In: Kirchner, C. (ed.) RTA 1993. LNCS, vol. 690, pp. 198–212. Springer, Heidelberg (1993)

    Google Scholar 

  4. Leuschel, M.: The ecce partial deduction system. In: G. Puebla, editor, Proceedings of the ILPS 1997 Workshop on Tools and Environments for (Constraint) Logic Programming, Universidad Politécnica de Madrid, Tech. Rep. CLIP7/97.1, Port Jefferson, USA (October 1997)

    Google Scholar 

  5. Leuschel, M., Martens, B., Sagonas, K.: Preserving termination of tabled logic programs while unfolding. In: Fuchs, N.E. (ed.) LOPSTR 1997. LNCS, vol. 1463, pp. 189–205. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Sahlin, D.: Mixtus: An automatic partial evaluator for full Prolog. New Generation Computing 12(1), 7–51 (1993)

    Article  MATH  Google Scholar 

  7. Serebrenik, A., De Schreye, D.: Inference of termination conditions for numerical loops in Prolog. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 654–668. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Winsborough, W.: Multiple specialization using minimal-function graph semantics. Journal of Logic Programming 13(2/3), 259–290 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Serebrenik, A., De Schreye, D. (2004). Proving Termination with Adornments. In: Bruynooghe, M. (eds) Logic Based Program Synthesis and Transformation. LOPSTR 2003. Lecture Notes in Computer Science, vol 3018. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25938-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25938-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22174-6

  • Online ISBN: 978-3-540-25938-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics