[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Approximation Spaces and Information Granulation

  • Conference paper
Rough Sets and Current Trends in Computing (RSCTC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3066))

Included in the following conference series:

Abstract

We discuss approximation spaces in the granular computing framework. Such approximation spaces generalise the approaches to concept approximation existing in rough set theory. Approximation spaces are constructed as higher level information granules and are obtained as the result of complex modelling. We present illustrative examples of modelling approximation spaces including approximation spaces for function approximation, inducing concept approximation, and some other information granule approximations. In modelling of such approximation spaces we use an important assumption that not only objects but also more complex information granules involved in approximations are perceived using only partial information about them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. System Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  2. Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)

    MATH  MathSciNet  Google Scholar 

  3. Polkowski, L., Skowron, A.: Rough mereology:A new paradigm for approximate reasoning. International Journal of Approximate Reasoning 15, 333–365 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Polkowski, L., Skowron, A.: Towards adaptive calculus of granules. In: Zadeh, L.A., Kacprzyk, J. (eds.) Computing with Words in Information/Intelligent Systems, Heidelberg, Germany, pp. 201–227. Physica-Verlag (1999)

    Google Scholar 

  5. Skowron, A., Stepaniuk, J.: Information granules and rough-neural computing. In: [10], pp. 43–84

    Google Scholar 

  6. Lin, T.Y.: The discovery, analysis and representation of data dependencies in databases. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1: Methodology and Applications. Studies in Fuzziness and Soft Computing, vol. 18, pp. 107–121. Physica-Verlag, Heidelberg (1998)

    Google Scholar 

  7. Ziarko, W.: Variable precision rough set model. Journal of Computer and System Sciences 46, 39–59 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Peters, J.F., Skowron, A., Synak, P., Ramanna, S.: Rough sets and information granulation. In: De Baets, B., Kaynak, O., Bilgiç, T. (eds.) IFSA 2003. LNCS, vol. 2715, pp. 370–377. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Skowron, A.: Toward intelligent systems: Calculi of information granules. Bulletin of the International Rough Set Society 5, 9–30 (2001)

    Google Scholar 

  10. Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough-Neural Computing: Techniques for Computing with Words. Cognitive Technologies. Springer, Heidelberg (2003)

    Google Scholar 

  11. Zadeh, L.A.: A new direction in AI: Toward a computational theory of perceptions. AI Magazine 22, 73–84 (2001)

    Google Scholar 

  12. Kloesgen, W., Zytkow, J. (eds.): Handbook of Knowledge Discovery and Data Mining. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Skowron, A., Swiniarski, R., Synak, P. (2004). Approximation Spaces and Information Granulation. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds) Rough Sets and Current Trends in Computing. RSCTC 2004. Lecture Notes in Computer Science(), vol 3066. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25929-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25929-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22117-3

  • Online ISBN: 978-3-540-25929-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics