Abstract
πGrammatical Evolution is presented and its performance on four benchmark problems is reported. πGrammatical Evolution is a position-independent variation on Grammatical Evolution’s genotype-phenotype mapping process where the order of derivation sequence steps are no longer applied to nonterminals in a predefined fashion from left to right on the developing program. Instead the genome is used to specify which nonterminal will be developed next, in addition to specifying the rule that will be applied to that nonterminal. Results suggest that the adoption of a more flexible mapping process where the order of non-terminal expansion is not determined a-priori, but instead itself evolved, is beneficial for Grammatical Evolution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Kluwer Academic Publishers, Dordrecht (2003)
O’Neill, M., Ryan, C., Keijzer, M., Cattolico, M.: Crossover in Grammatical Evolution. In: Genetic Programming and Evolvable Machines, vol. 4(1), Kluwer Academic Publishers, Dordrecht (2003)
O’Neill, M.: Automatic Programming in an Arbitrary Language: Evolving Programs in Grammatical Evolution. PhD thesis, University of Limerick (2001)
O’Neill, M., Ryan, C.: Grammatical Evolution. IEEE Trans. Evolutionary Computation 5(4) (2001)
Ryan, C., Collins, J.J., O’Neill, M.: Grammatical Evolution: Evolving Programs for an Arbitrary Language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–95. Springer, Heidelberg (1998)
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)
Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge (1994)
Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming – An Introduction; On the Automatic Evolution of Computer Programs and its Applications. Morgan Kaufmann, San Francisco (1998)
Koza, J.R., Andre, D., Bennett III, F.H., Keane, M.: Genetic Programming 3: Darwinian Invention and Problem Solving. Morgan Kaufmann, San Francisco (1999)
Koza, J.R., Keane, M., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G.: Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers, Dordrecht (2003)
Ryan, C., Nicolau, M., O’Neill, M.: Genetic Algorithms Using Grammatical Evolution. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 279–288. Springer, Heidelberg (2002)
Ryan, C., Azad, A., Sheahan, A., O’Neill, M.: No Coercion and No Prohibition, A Position Independent Encoding Scheme for Evolutionary Algorithms—The Chorus System. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 132–142. Springer, Heidelberg (2002)
Langdon, W.B., Poli, R.: Why Ants are Hard. In: Genetic Programming 1998: Proc. of the Third Annual Conference, University of Wisconsin, Madison, Wisconsin, USA, pp. 193–201. Morgan Kaufmann, San Francisco (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
O’Neill, M., Brabazon, A., Nicolau, M., Garraghy, S.M., Keenan, P. (2004). πGrammatical Evolution. In: Deb, K. (eds) Genetic and Evolutionary Computation – GECCO 2004. GECCO 2004. Lecture Notes in Computer Science, vol 3103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24855-2_70
Download citation
DOI: https://doi.org/10.1007/978-3-540-24855-2_70
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22343-6
Online ISBN: 978-3-540-24855-2
eBook Packages: Springer Book Archive