[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3103))

Included in the following conference series:

  • 1017 Accesses

Abstract

πGrammatical Evolution is presented and its performance on four benchmark problems is reported. πGrammatical Evolution is a position-independent variation on Grammatical Evolution’s genotype-phenotype mapping process where the order of derivation sequence steps are no longer applied to nonterminals in a predefined fashion from left to right on the developing program. Instead the genome is used to specify which nonterminal will be developed next, in addition to specifying the rule that will be applied to that nonterminal. Results suggest that the adoption of a more flexible mapping process where the order of non-terminal expansion is not determined a-priori, but instead itself evolved, is beneficial for Grammatical Evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Kluwer Academic Publishers, Dordrecht (2003)

    MATH  Google Scholar 

  2. O’Neill, M., Ryan, C., Keijzer, M., Cattolico, M.: Crossover in Grammatical Evolution. In: Genetic Programming and Evolvable Machines, vol. 4(1), Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  3. O’Neill, M.: Automatic Programming in an Arbitrary Language: Evolving Programs in Grammatical Evolution. PhD thesis, University of Limerick (2001)

    Google Scholar 

  4. O’Neill, M., Ryan, C.: Grammatical Evolution. IEEE Trans. Evolutionary Computation 5(4) (2001)

    Google Scholar 

  5. Ryan, C., Collins, J.J., O’Neill, M.: Grammatical Evolution: Evolving Programs for an Arbitrary Language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–95. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  7. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  8. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming – An Introduction; On the Automatic Evolution of Computer Programs and its Applications. Morgan Kaufmann, San Francisco (1998)

    MATH  Google Scholar 

  9. Koza, J.R., Andre, D., Bennett III, F.H., Keane, M.: Genetic Programming 3: Darwinian Invention and Problem Solving. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  10. Koza, J.R., Keane, M., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G.: Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers, Dordrecht (2003)

    MATH  Google Scholar 

  11. Ryan, C., Nicolau, M., O’Neill, M.: Genetic Algorithms Using Grammatical Evolution. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 279–288. Springer, Heidelberg (2002)

    Google Scholar 

  12. Ryan, C., Azad, A., Sheahan, A., O’Neill, M.: No Coercion and No Prohibition, A Position Independent Encoding Scheme for Evolutionary Algorithms—The Chorus System. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 132–142. Springer, Heidelberg (2002)

    Google Scholar 

  13. Langdon, W.B., Poli, R.: Why Ants are Hard. In: Genetic Programming 1998: Proc. of the Third Annual Conference, University of Wisconsin, Madison, Wisconsin, USA, pp. 193–201. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

O’Neill, M., Brabazon, A., Nicolau, M., Garraghy, S.M., Keenan, P. (2004). πGrammatical Evolution. In: Deb, K. (eds) Genetic and Evolutionary Computation – GECCO 2004. GECCO 2004. Lecture Notes in Computer Science, vol 3103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24855-2_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24855-2_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22343-6

  • Online ISBN: 978-3-540-24855-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics