Abstract
The aim of this paper is to clearly demonstrate the potential ability of a similarity-based mating scheme to dynamically control the balance between the diversity of solutions and the convergence to the Pareto front in evolutionary multiobjective optimization. The similarity-based mating scheme chooses two parents in the following manner. For choosing one parent (say Parent A), first a pre-specified number of candidates (say α candidates) are selected by iterating the standard fitness-based binary tournament selection. Then the average solution of those candidates is calculated in the objective space. The most similar or dissimilar candidate to the average solution is chosen as Parent A. When we want to increase the diversity of solutions, the selection probability of Parent A is biased toward extreme solutions by choosing the most dissimilar candidate. The strength of this diversity-preserving effort is adjusted by the parameter α. We can also bias the selection probability toward center solutions by choosing the most similar candidate when we want to decrease the diversity. The selection probability of the other parent (i.e., the mate of Parent A) is biased toward similar solutions to Parent A for increasing the convergence speed to the Pareto front. This is implemented by choosing the most similar one to Parent A among a pre-specified number of candidates (say β candidates). The strength of this convergence speed-up effort is adjusted by the parameter β. When we want to increase the diversity of solutions, the most dissimilar candidate to Parent A is chosen as its mate. Our idea is to dynamically control the diversity-convergence balance by changing the values of two control parameters α and β during the execution of evolutionary multiobjective optimization algorithms. We examine the effectiveness of our idea through computational experiments on multiobjective knapsack problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, Boston (2002)
Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6, 182–197 (2002)
Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization. In: Proc. of 5th International Conference on Genetic Algorithms, pp. 416–423 (1993)
Fonseca, C.M., Fleming, P.J.: An Overview of Evolutionary Algorithms in Multiobjective Optimization. Evolutionary Computation 3, 1–16 (1995)
Goldberg, D.E.: Genetic Algorithms in Search. Addison-Wesley, Reading (1989)
Hajela, P., Lin, C.Y.: Genetic Search Strategies in Multicriterion Optimal Design. Structural Optimization 4, 99–107 (1992)
Horn, J., Nafpliotis, N., Goldberg, D.E.: A Niched Pareto Genetic Algorithm for Multi-Objective Optimization. Proc. of 1st IEEE International Conference on Evolutionary Computation, 82–87 (1994)
Huang, C.F.: Using an Immune System Model to Explore Mate Selection in Genetic Algorithms. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1041–1052. Springer, Heidelberg (2003)
Ishibuchi, H., Murata, T.: A Multi-Objective Genetic Local Search Algorithm and Its Application to Flowshop Scheduling. IEEE Trans. on Systems, Man, and Cybernetics - Part C: Applications and Reviews 28, 392–403 (1998)
Ishibuchi, H., Shibata, Y.: An empirical study on the effect of mating restriction on the search ability of EMO algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 433–447. Springer, Heidelberg (2003)
Ishibuchi, H., Shibata, Y.: A Similarity-Based Mating Scheme for Evolutionary Multiobjective Optimization. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1065–1076. Springer, Heidelberg (2003)
Ishibuchi, H., Yoshida, T., Murata, T.: Balance between Genetic Search and Local Search in Memetic Algorithms for Multiobjective Permutation Flowshop Scheduling. IEEE Trans. on Evolutionary Computation 7, 204–223 (2003)
Jaszkiewicz, A.: Genetic Local Search for Multi-Objective Combinatorial Optimization. European Journal of Operational Research 137, 50–71 (2002)
Knowles, J.D., Corne, D.W.: On Metrics for Comparing Non-Dominated Sets. In: Proc. of 2002 Congress on Evolutionary Computation, pp. 711–716 (2002)
Knowles, J.D., Corne, D.W.: Towards Landscape Analyses to Inform the Design of a Hybrid Local Search for Multiobjective Quadratic Assignment Problem. In: Abraham, A., Ruiz-del-Solar, J., Koppen, M. (eds.) Soft Computing Systems, pp. 271–279. IOS Press, Amsterdam (2002)
Knowles, J.D., Corne, D.W.: Instance Generators and Test Suites for the Multiobjective Quadratic Assignment Problem. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 295–310. Springer, Heidelberg (2001)
Okabe, T., Jin, Y., Sendhoff, B.: A Critical Survey of Performance Indices for Multi- Objective Optimization. In: Okabe, T., Jin, Y., Sendhoff, B. (eds.) Proc. of 2003 Congress on Evolutionary Computation, pp. 878–885 (2003)
Schaffer, J.D.: Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In: Proc. of 1st International Conference on Genetic Algorithms and Their Applications, pp. 93–100 (1985)
Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art. Evolutionary Computation 8, 125–147 (2000)
Zitzler, E., Thiele, L.: Multiobjective Optimization using Evolutionary Algorithms – A Comparative Case Study. In: Zitzler, E., Thiele, L. (eds.) Proc. of 5th International Conference on Parallel Problem Solving from Nature, pp. 292–301 (1998)
Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Trans. on Evolutionary Computation 3, 257–271 (1999)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans. on Evolutionary Computation 7, 117–132 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ishibuchi, H., Shibata, Y. (2004). Mating Scheme for Controlling the Diversity-Convergence Balance for Multiobjective Optimization. In: Deb, K. (eds) Genetic and Evolutionary Computation – GECCO 2004. GECCO 2004. Lecture Notes in Computer Science, vol 3102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24854-5_121
Download citation
DOI: https://doi.org/10.1007/978-3-540-24854-5_121
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22344-3
Online ISBN: 978-3-540-24854-5
eBook Packages: Springer Book Archive