[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Mating Scheme for Controlling the Diversity-Convergence Balance for Multiobjective Optimization

  • Conference paper
Genetic and Evolutionary Computation – GECCO 2004 (GECCO 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3102))

Included in the following conference series:

Abstract

The aim of this paper is to clearly demonstrate the potential ability of a similarity-based mating scheme to dynamically control the balance between the diversity of solutions and the convergence to the Pareto front in evolutionary multiobjective optimization. The similarity-based mating scheme chooses two parents in the following manner. For choosing one parent (say Parent A), first a pre-specified number of candidates (say α candidates) are selected by iterating the standard fitness-based binary tournament selection. Then the average solution of those candidates is calculated in the objective space. The most similar or dissimilar candidate to the average solution is chosen as Parent A. When we want to increase the diversity of solutions, the selection probability of Parent A is biased toward extreme solutions by choosing the most dissimilar candidate. The strength of this diversity-preserving effort is adjusted by the parameter α. We can also bias the selection probability toward center solutions by choosing the most similar candidate when we want to decrease the diversity. The selection probability of the other parent (i.e., the mate of Parent A) is biased toward similar solutions to Parent A for increasing the convergence speed to the Pareto front. This is implemented by choosing the most similar one to Parent A among a pre-specified number of candidates (say β candidates). The strength of this convergence speed-up effort is adjusted by the parameter β. When we want to increase the diversity of solutions, the most dissimilar candidate to Parent A is chosen as its mate. Our idea is to dynamically control the diversity-convergence balance by changing the values of two control parameters α and β during the execution of evolutionary multiobjective optimization algorithms. We examine the effectiveness of our idea through computational experiments on multiobjective knapsack problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, Boston (2002)

    MATH  Google Scholar 

  2. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6, 182–197 (2002)

    Article  Google Scholar 

  4. Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization. In: Proc. of 5th International Conference on Genetic Algorithms, pp. 416–423 (1993)

    Google Scholar 

  5. Fonseca, C.M., Fleming, P.J.: An Overview of Evolutionary Algorithms in Multiobjective Optimization. Evolutionary Computation 3, 1–16 (1995)

    Article  Google Scholar 

  6. Goldberg, D.E.: Genetic Algorithms in Search. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  7. Hajela, P., Lin, C.Y.: Genetic Search Strategies in Multicriterion Optimal Design. Structural Optimization 4, 99–107 (1992)

    Article  Google Scholar 

  8. Horn, J., Nafpliotis, N., Goldberg, D.E.: A Niched Pareto Genetic Algorithm for Multi-Objective Optimization. Proc. of 1st IEEE International Conference on Evolutionary Computation, 82–87 (1994)

    Google Scholar 

  9. Huang, C.F.: Using an Immune System Model to Explore Mate Selection in Genetic Algorithms. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1041–1052. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Ishibuchi, H., Murata, T.: A Multi-Objective Genetic Local Search Algorithm and Its Application to Flowshop Scheduling. IEEE Trans. on Systems, Man, and Cybernetics - Part C: Applications and Reviews 28, 392–403 (1998)

    Article  Google Scholar 

  11. Ishibuchi, H., Shibata, Y.: An empirical study on the effect of mating restriction on the search ability of EMO algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 433–447. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Ishibuchi, H., Shibata, Y.: A Similarity-Based Mating Scheme for Evolutionary Multiobjective Optimization. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1065–1076. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between Genetic Search and Local Search in Memetic Algorithms for Multiobjective Permutation Flowshop Scheduling. IEEE Trans. on Evolutionary Computation 7, 204–223 (2003)

    Article  Google Scholar 

  14. Jaszkiewicz, A.: Genetic Local Search for Multi-Objective Combinatorial Optimization. European Journal of Operational Research 137, 50–71 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Knowles, J.D., Corne, D.W.: On Metrics for Comparing Non-Dominated Sets. In: Proc. of 2002 Congress on Evolutionary Computation, pp. 711–716 (2002)

    Google Scholar 

  16. Knowles, J.D., Corne, D.W.: Towards Landscape Analyses to Inform the Design of a Hybrid Local Search for Multiobjective Quadratic Assignment Problem. In: Abraham, A., Ruiz-del-Solar, J., Koppen, M. (eds.) Soft Computing Systems, pp. 271–279. IOS Press, Amsterdam (2002)

    Google Scholar 

  17. Knowles, J.D., Corne, D.W.: Instance Generators and Test Suites for the Multiobjective Quadratic Assignment Problem. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 295–310. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Okabe, T., Jin, Y., Sendhoff, B.: A Critical Survey of Performance Indices for Multi- Objective Optimization. In: Okabe, T., Jin, Y., Sendhoff, B. (eds.) Proc. of 2003 Congress on Evolutionary Computation, pp. 878–885 (2003)

    Google Scholar 

  19. Schaffer, J.D.: Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In: Proc. of 1st International Conference on Genetic Algorithms and Their Applications, pp. 93–100 (1985)

    Google Scholar 

  20. Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art. Evolutionary Computation 8, 125–147 (2000)

    Article  Google Scholar 

  21. Zitzler, E., Thiele, L.: Multiobjective Optimization using Evolutionary Algorithms – A Comparative Case Study. In: Zitzler, E., Thiele, L. (eds.) Proc. of 5th International Conference on Parallel Problem Solving from Nature, pp. 292–301 (1998)

    Google Scholar 

  22. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Trans. on Evolutionary Computation 3, 257–271 (1999)

    Article  Google Scholar 

  23. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans. on Evolutionary Computation 7, 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ishibuchi, H., Shibata, Y. (2004). Mating Scheme for Controlling the Diversity-Convergence Balance for Multiobjective Optimization. In: Deb, K. (eds) Genetic and Evolutionary Computation – GECCO 2004. GECCO 2004. Lecture Notes in Computer Science, vol 3102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24854-5_121

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24854-5_121

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22344-3

  • Online ISBN: 978-3-540-24854-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics