[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Application of the General Gaussian Membership Function for the Fuzzy Model Parameters Tunning

  • Conference paper
Artificial Intelligence and Soft Computing - ICAISC 2004 (ICAISC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3070))

Included in the following conference series:

  • 1410 Accesses

Abstract

A system input-output response is modeled using a knowledge-based method of signal processing known as neuro-fuzzy logic. The paper presents a new method of the fuzzy model parameters tunning. Fuzzy model tuning procedures based on an evolutionary algorithm are also given. As an example, the analysis of the membership function kind is carried out for the fuzzy modeling of parameters, which are necessary to describe the state of a pressure vessel with water-steam mixture during accidental depressurizations.

This work was supported by the EU FP5 project DAMADICS and in part by the State Committee for Scientific Research in Poland (KBN)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chung, F.L., Duan, J.C.: On Multistage Fuzzy Neural Network Modeling. IEEE Trans. on Fuzzy Systems 8(2), 125–142 (2000)

    Article  Google Scholar 

  2. Galar, R.: Evolutionary search with soft selection. Biological Cybernetics 60, 357–364 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Georgescu, C., Afshari, A., Bornard, G.: A comparison between fuzzy logic neural networks and conventional approaches to system modeling and identification. In: EUFIT 1993 Proc. First European Congress on Fuzzy Intelligent Technologies, Aachen, September 7-10, pp. 1632–1640 (1993)

    Google Scholar 

  4. Jang, J.S.: ANFIS: Adaptive network based fuzzy inference system. IEEE Trans. Sys. Man. Cybern. 23, 665–684 (1993)

    Article  Google Scholar 

  5. Lin, C.T., Lee, C.S.G.: Neural network based fuzzy logic control and decision system. IEEE Trans. Comput. 40, 1320–1336 (1991)

    Article  MathSciNet  Google Scholar 

  6. Lȩski, J.: Improving the generalization ability of neuro-fuzzy systems by ε- intensitive learning. Int. Journal of Applied Mathematics and Computer Science 12(3), 437–447 (2002)

    MathSciNet  Google Scholar 

  7. Obuchowicz, A.: Evolutionary Algorithms for Global Optimization and Dynamic System Diagnosis. Lubusky Scientific Society Press, Zielona Gra (2003)

    Google Scholar 

  8. Pieczyński, A.: Fuzzy modeling of multidimensional non-linear process – influence of membership function shape. In: Proc. 8th East West Zittau Fuzzy Colloquium, Zittau, Germany, September 6-8, pp. 125–133 (2000)

    Google Scholar 

  9. Pieczyński, A., Kästner, W.: Fuzzy modeling of multidimensional non-linear process – design and analysis of structures. In: Hampel, R., Wagenknecht, M., Chaker, N. (eds.) Advances in Soft Computing – Fuzzy Control, Theory and Practice, pp. 376–386. Physica – Verlag, Heidelberg (2000)

    Google Scholar 

  10. Pieczyński, A.: Fuzzy modeling of multidimensional nonlinear processes – tuning procedures. In: Proc. 8th IEEE Int. Conf., Methods and Models in Automation and Robotics, MMAR 2002, Szczecin, Poland, September 2002, vol. 1, pp. 667–672 (2002)

    Google Scholar 

  11. Rutkowska, D.: Intelligent Computation Systems. Akademicka Oficyna Wydawnicza, Warszawa (1997) (in Polish)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pieczyński, A., Obuchowicz, A. (2004). Application of the General Gaussian Membership Function for the Fuzzy Model Parameters Tunning. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds) Artificial Intelligence and Soft Computing - ICAISC 2004. ICAISC 2004. Lecture Notes in Computer Science(), vol 3070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24844-6_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24844-6_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22123-4

  • Online ISBN: 978-3-540-24844-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics