[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Momentum Modification of the RLS Algorithms

  • Conference paper
Artificial Intelligence and Soft Computing - ICAISC 2004 (ICAISC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3070))

Included in the following conference series:

Abstract

This paper presents a momentum modification of two RLS algoritms: momentum RLS and UD momentum RLS, each in classical and linear version. All methods are tested on two standart benchmarks. The results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Azimi-Sadjadi, M.R., Liou, R.J.: Fast learning process of multi-layer neural network using recursive least squares method. IEEE Transactions on Signal Processing 40(2) (1992)

    Google Scholar 

  2. Bilski, J.: New algorithms for learning of the feedforward neural networks. II KSNiIZ, Szczyrk, pp. 39–45 (1996)

    Google Scholar 

  3. Bilski, J., Rutkowski, L.: A fast training algorithm for neural networks. IEEE Trans. on Circuits and Systems II, 749–753 (June 1998)

    Google Scholar 

  4. Bilski, J.: The extended RLS algorithm with weight decrease for neural networks learning. IV KSNiIZ, Zakopane, pp. 41–46 (1999)

    Google Scholar 

  5. Hagan, M., Menhaj, M.B.: Training feed forward networks with the Marquardt algorithm. IEEE Trans. on Neural Networks 5, 989–993 (1994)

    Article  Google Scholar 

  6. Karras, D., Perantonis, S.: An efficient constrained training algorithm for feedforward networks. IEEE Transaction on Neural Networks 6, 1420–1434 (1995)

    Article  Google Scholar 

  7. Riedmiller, M., Braun, H.: A direct method for faster backpropagation learning: The RPROP Algorithm. In: IEEE International Conference on Neural Networks (ICNN 1993), San Francisco, pp. 586–591 (1993)

    Google Scholar 

  8. Strobach, P.: Linear Prediction Theory - A Mathematical Basis for Adaptive Systems. Springer, New York (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bilski, J. (2004). Momentum Modification of the RLS Algorithms. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds) Artificial Intelligence and Soft Computing - ICAISC 2004. ICAISC 2004. Lecture Notes in Computer Science(), vol 3070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24844-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24844-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22123-4

  • Online ISBN: 978-3-540-24844-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics