Abstract
This paper presents a momentum modification of two RLS algoritms: momentum RLS and UD momentum RLS, each in classical and linear version. All methods are tested on two standart benchmarks. The results are discussed.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Azimi-Sadjadi, M.R., Liou, R.J.: Fast learning process of multi-layer neural network using recursive least squares method. IEEE Transactions on Signal Processing 40(2) (1992)
Bilski, J.: New algorithms for learning of the feedforward neural networks. II KSNiIZ, Szczyrk, pp. 39–45 (1996)
Bilski, J., Rutkowski, L.: A fast training algorithm for neural networks. IEEE Trans. on Circuits and Systems II, 749–753 (June 1998)
Bilski, J.: The extended RLS algorithm with weight decrease for neural networks learning. IV KSNiIZ, Zakopane, pp. 41–46 (1999)
Hagan, M., Menhaj, M.B.: Training feed forward networks with the Marquardt algorithm. IEEE Trans. on Neural Networks 5, 989–993 (1994)
Karras, D., Perantonis, S.: An efficient constrained training algorithm for feedforward networks. IEEE Transaction on Neural Networks 6, 1420–1434 (1995)
Riedmiller, M., Braun, H.: A direct method for faster backpropagation learning: The RPROP Algorithm. In: IEEE International Conference on Neural Networks (ICNN 1993), San Francisco, pp. 586–591 (1993)
Strobach, P.: Linear Prediction Theory - A Mathematical Basis for Adaptive Systems. Springer, New York (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bilski, J. (2004). Momentum Modification of the RLS Algorithms. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds) Artificial Intelligence and Soft Computing - ICAISC 2004. ICAISC 2004. Lecture Notes in Computer Science(), vol 3070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24844-6_18
Download citation
DOI: https://doi.org/10.1007/978-3-540-24844-6_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22123-4
Online ISBN: 978-3-540-24844-6
eBook Packages: Springer Book Archive