[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Challenge of Soft Computing Techniques for Tumor Characterization

  • Conference paper
Artificial Intelligence and Soft Computing - ICAISC 2004 (ICAISC 2004)

Abstract

Computational diagnosis tools are becoming indispensable to support modern medical diagnosis. This research work introduces an hybrid soft computing scheme consisting of Fuzzy Cognitive Maps and the effective Active Hebbian Learning (AHL) algorithm for tumor characterization. The proposed method exploits human experts’ knowledge on histopathology expressed in descriptive terms and concepts and it is enhanced with Hebbian learning and then it classifies tumors based on the morphology of tissues. This method was validated in clinical data and the results enforce the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bostwick, D., Ramnani, D., Cheng, L.: Diagnosis and grading of bladder cancer and associated lesions. Urologic Clinics of North America 26, 493–507 (1999)

    Article  Google Scholar 

  2. Ooms, E., Anderson, W., Alons, C., Boon, M., Veldhuizen, R.: Analysis of the performance of pathologists in grading of bladder tumours. Human Pathology 26, 140–143 (1983)

    Article  Google Scholar 

  3. Spyridonos, P., Cavouras, D., Ravazoula, P., Nikiforidis, G.: A computer-based diagnostic and prognostic system for assessing urinary bladder tumour grade and predicting cancer recurrence. Med Inform Internet Medic 27, 111–122 (2002)

    Article  Google Scholar 

  4. Kosko, B.: Fuzzy cognitive maps. Int. J. Man-Machine Studies 24, 65–75 (1986)

    Article  MATH  Google Scholar 

  5. Papageorgiou, E., Stylios, C., Groumpos, P.: Active hebbian learning algorithm to train fuzzy cognitive maps. Int J. Approx Reasoning (2004) (accepted for publication)

    Google Scholar 

  6. Papageorgiou, E., Stylios, C., Groumpos, P.: An integrated two-level hierarchical decision making system based on fcms. IEEE Trans Biomed Engin 50, 1326–1339 (2003)

    Article  Google Scholar 

  7. Stylios, C., Groumpos, P.: Fuzzy cognitive maps in modelling supervisory control systems. Intelligent and Fuzzy Systems 8, 83–98 (2000)

    Google Scholar 

  8. Lin, C., Lee, C.: Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems. N.J. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  9. Murphy, W., Soloway, S., Jukkola, A., Crabtree, W., Ford, K.: Urinary cytology and bladder cancer, the cellular features of transitional cell neoplasms. Cancer 53, 1555–1565 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Papageorgiou, E.I., Spyridonos, P.P., Stylios, C.D., Ravazoula, P., Nikiforidis, G.C., Groumpos, P.P. (2004). The Challenge of Soft Computing Techniques for Tumor Characterization. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds) Artificial Intelligence and Soft Computing - ICAISC 2004. ICAISC 2004. Lecture Notes in Computer Science(), vol 3070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24844-6_161

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24844-6_161

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22123-4

  • Online ISBN: 978-3-540-24844-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics