[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Lempel, Even, and Cederbaum Planarity Method

  • Conference paper
Experimental and Efficient Algorithms (WEA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3059))

Included in the following conference series:

Abstract

We present a simple pedagogical graph theoretical description of Lempel, Even, and Cederbaum (LEC) planarity method based on concepts due to Thomas. A linear-time implementation of LEC method using the PC-tree data structure of Shih and Hsu is provided and described in details. We report on an experimental study involving this implementation and other available linear-time implementations of planarity algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Auslander, L., Parter, S.V.: On imbedding graphs in the plane. Journal of Mathematics and Mechanics 10, 517–523 (1961)

    MATH  MathSciNet  Google Scholar 

  2. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ–tree algorithms. Journal of Computer and Systems Sciences 13, 335–379 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boyer, J.M., Cortese, P.F., Patrignani, M., Di Battista, G.: Stop minding your P’s and Q’s: Implementing a fast and simple DFS-based planarity testing and embedding algorithm. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Boyer, J.M., Myrvold, W.: On the cutting edge: Simplified O(n) planarity by edge addition, p. 29 (preprint)

    Google Scholar 

  5. Boyer, J.M., Myrvold, W.: Stop minding your P’s and Q’s: A simplified O(n) planar embedding algorithm. In: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 140–146 (1999)

    Google Scholar 

  6. Chiba, N., Nishizeki, T., Abe, A., Ozawa, T.: A linear algorithm for embedding planar graphs using PQ–trees. Journal of Computer and Systems Sciences 30, 54–76 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Deo, N.: Note on Hopcroft and Tarjan planarity algorithm. Journal of the Association for Computing Machinery 23, 74–75 (1976)

    MATH  MathSciNet  Google Scholar 

  8. Even, S., Tarjan, R.E.: Computing an st-numbering. Theoretical Computer Science 2, 339–344 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  9. Goldstein, A.J.: An efficient and constructive algorithm for testing whether a graph can be embedded in a plane. In Graph and Combinatorics Conf. Contract No. NONR 1858-(21), Office of Naval Research Logistics Proj., Dep. of Math., Princeton U., p. 2 (1963)

    Google Scholar 

  10. Hopcroft, J., Tarjan, R.: Efficient planarity testing. Journal of the Association for Computing Machinery 21(4), 549–568 (1974)

    MATH  MathSciNet  Google Scholar 

  11. Hsu, W.L.: An efficient implementation of the PC-tree algorithm of Shih & Hsu’s planarity test. Technical report, Inst. of Information Science, Academia Sinica (2003)

    Google Scholar 

  12. Jünger, M., Leipert, S., Mutzel, P.: Pitfalls of using PQ-trees in automatic graph drawing. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 193–204. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  13. Lempel, A., Even, S., Cederbaum, I.: An algorithm for planarity testing of graphs. In: Rosenstiehl, P. (ed.) Theory of Graphs, pp. 215–232. Gordon and Breach, New York (1967)

    Google Scholar 

  14. Mehlhorn, K., Näher, S.: The LEDA Platform of Combinatorial and Geometric Computing. Cambridge Press, Cambridge (1997)

    Google Scholar 

  15. Noma, A.: Análise experimental de algoritmos de planaridade. Master’s thesis, Universidade de São Paulo (2003) (in Portuguese), http://www.ime.usp.br/dcc/posgrad/teses/noma/dissertation.ps.gz

  16. Reingold, E.M., Nievergelt, J., Deo, N.: Combinatorial Algorithms: Theory and Practice. Prentice-Hall, Inc., Englewood Cliffs (1977)

    Google Scholar 

  17. Shih, W.K., Hsu, W.L.: A simple test for planar graphs. In: Proceedings of the International Workshop on Discrete Math. and Algorithms, pp. 110–122. University of Hong Kong (1993)

    Google Scholar 

  18. Shih, W.K., Hsu, W.L.: A new planarity test. Theoretical Computer Science 223, 179–191 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Thomas, R.: Planarity in linear time (1997), http://www.math.gatech.edu/~thomas/

  20. Williamson, S.G.: Embedding graphs in the plane – algorithmic aspects. Ann. Disc. Math. 6, 349–384 (1980)

    Article  MATH  Google Scholar 

  21. Williamson, S.G.: Combinatorics for Computer Science. Computer Science Press, Maryland (1985)

    Google Scholar 

  22. Williamson, S.G.: Personal Communication (August 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boyer, J.M., Fernandes, C.G., Noma, A., de Pina, J.C. (2004). Lempel, Even, and Cederbaum Planarity Method. In: Ribeiro, C.C., Martins, S.L. (eds) Experimental and Efficient Algorithms. WEA 2004. Lecture Notes in Computer Science, vol 3059. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24838-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24838-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22067-1

  • Online ISBN: 978-3-540-24838-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics