Abstract
We present a simple pedagogical graph theoretical description of Lempel, Even, and Cederbaum (LEC) planarity method based on concepts due to Thomas. A linear-time implementation of LEC method using the PC-tree data structure of Shih and Hsu is provided and described in details. We report on an experimental study involving this implementation and other available linear-time implementations of planarity algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Auslander, L., Parter, S.V.: On imbedding graphs in the plane. Journal of Mathematics and Mechanics 10, 517–523 (1961)
Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ–tree algorithms. Journal of Computer and Systems Sciences 13, 335–379 (1976)
Boyer, J.M., Cortese, P.F., Patrignani, M., Di Battista, G.: Stop minding your P’s and Q’s: Implementing a fast and simple DFS-based planarity testing and embedding algorithm. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 25–36. Springer, Heidelberg (2004)
Boyer, J.M., Myrvold, W.: On the cutting edge: Simplified O(n) planarity by edge addition, p. 29 (preprint)
Boyer, J.M., Myrvold, W.: Stop minding your P’s and Q’s: A simplified O(n) planar embedding algorithm. In: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 140–146 (1999)
Chiba, N., Nishizeki, T., Abe, A., Ozawa, T.: A linear algorithm for embedding planar graphs using PQ–trees. Journal of Computer and Systems Sciences 30, 54–76 (1985)
Deo, N.: Note on Hopcroft and Tarjan planarity algorithm. Journal of the Association for Computing Machinery 23, 74–75 (1976)
Even, S., Tarjan, R.E.: Computing an st-numbering. Theoretical Computer Science 2, 339–344 (1976)
Goldstein, A.J.: An efficient and constructive algorithm for testing whether a graph can be embedded in a plane. In Graph and Combinatorics Conf. Contract No. NONR 1858-(21), Office of Naval Research Logistics Proj., Dep. of Math., Princeton U., p. 2 (1963)
Hopcroft, J., Tarjan, R.: Efficient planarity testing. Journal of the Association for Computing Machinery 21(4), 549–568 (1974)
Hsu, W.L.: An efficient implementation of the PC-tree algorithm of Shih & Hsu’s planarity test. Technical report, Inst. of Information Science, Academia Sinica (2003)
Jünger, M., Leipert, S., Mutzel, P.: Pitfalls of using PQ-trees in automatic graph drawing. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 193–204. Springer, Heidelberg (1997)
Lempel, A., Even, S., Cederbaum, I.: An algorithm for planarity testing of graphs. In: Rosenstiehl, P. (ed.) Theory of Graphs, pp. 215–232. Gordon and Breach, New York (1967)
Mehlhorn, K., Näher, S.: The LEDA Platform of Combinatorial and Geometric Computing. Cambridge Press, Cambridge (1997)
Noma, A.: Análise experimental de algoritmos de planaridade. Master’s thesis, Universidade de São Paulo (2003) (in Portuguese), http://www.ime.usp.br/dcc/posgrad/teses/noma/dissertation.ps.gz
Reingold, E.M., Nievergelt, J., Deo, N.: Combinatorial Algorithms: Theory and Practice. Prentice-Hall, Inc., Englewood Cliffs (1977)
Shih, W.K., Hsu, W.L.: A simple test for planar graphs. In: Proceedings of the International Workshop on Discrete Math. and Algorithms, pp. 110–122. University of Hong Kong (1993)
Shih, W.K., Hsu, W.L.: A new planarity test. Theoretical Computer Science 223, 179–191 (1999)
Thomas, R.: Planarity in linear time (1997), http://www.math.gatech.edu/~thomas/
Williamson, S.G.: Embedding graphs in the plane – algorithmic aspects. Ann. Disc. Math. 6, 349–384 (1980)
Williamson, S.G.: Combinatorics for Computer Science. Computer Science Press, Maryland (1985)
Williamson, S.G.: Personal Communication (August 2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Boyer, J.M., Fernandes, C.G., Noma, A., de Pina, J.C. (2004). Lempel, Even, and Cederbaum Planarity Method. In: Ribeiro, C.C., Martins, S.L. (eds) Experimental and Efficient Algorithms. WEA 2004. Lecture Notes in Computer Science, vol 3059. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24838-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-540-24838-5_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22067-1
Online ISBN: 978-3-540-24838-5
eBook Packages: Springer Book Archive