[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3051))

Included in the following conference series:

Abstract

Matrices over a Kleene algebra with tests themselves form a Kleene algebra. The matrices whose entries are tests form an algebra of relations if the converse of a matrix is defined as its transpose. Abstracting from this concrete setting yields the concept of Kleene algebra with relations.

This research is supported by NSERC (Natural Sciences and Engineering Research Council of Canada).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aarts, C.J.: Galois connections presented calculationally. Technical report, Eindhoven University of Technology, Department of Mathematics and Computer Science (1992)

    Google Scholar 

  2. Brink, C., Kahl, W., Schmidt, G. (eds.): Relational Methods in Computer Science. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  3. Cardoso, R.: Untersuchung paralleler Programme mit relationenalgebraischen Methoden. Diplomarbeit, Institut für Informatik, Technische Universität München (1982)

    Google Scholar 

  4. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, London (1971)

    MATH  Google Scholar 

  5. Desharnais, J.: Monomorphic characterization of n-ary direct products. Information Sciences – An International Journal 119, 275–288 (1999)

    MATH  MathSciNet  Google Scholar 

  6. Desharnais, J., Möller, B.: Characterizing determinacy in Kleene algebras. Information Sciences 139, 253–273 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. de Roever, W.-P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods and their Comparison. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  8. Hoare, C.A.R., Jifeng, H., Sanders, J.W.: Prespecification in data refinement. Information Processing Letters 25, 71–76 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jipsen, P., Maddux, R.: Nonrepresentable sequential algebras. Logic Journal of the IGPL 5, 565–574 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. von Karger, B., Hoare, C.A.R.: Sequential calculus. Information Processing Letters 53, 123–130 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. von Karger, B.: Sequential calculus. Technical Report ProCos II: [Kiel BvK 15/11], Christian-Albrechts Universität zu Kiel (1995)

    Google Scholar 

  12. Kempf, P., Winter, M.: Relational unsharpness and processes. In: Berghammer, R., Möller, B. (eds.) Participant’s Proceedings of the 7th International Seminar on Relational Methods in Computer Science, in combination with 2nd InternationalWorkshop on Applications of Kleene Algebra, Bad Malente (near Kiel), Germany, Institut für Informatik und Praktische Mathematik, Christian-Albrechts- Universität zu Kiel, pp. 270–276 (2003)

    Google Scholar 

  13. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. Information and Computation 110, 366–390 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kozen, D.: Kleene algebras with tests. ACM Transactions on Programming Languages and Systems 19, 427–443 (1997)

    Article  Google Scholar 

  15. Kozen, D.: Typed Kleene algebra. Technical Report 98-1669, Computer Science Department, Cornell University (1998)

    Google Scholar 

  16. Kozen, D.: Myhill-Nerode relations on automatic systems and the completeness of Kleene algebra. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 27–38. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  17. Maddux, R.D.: On the derivation of identities involving projection functions. Technical report, Department of Mathematics, Iowa State University (1993)

    Google Scholar 

  18. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)

    Google Scholar 

  19. Milner, R.: Communication and Concurrency. Prentice Hall International Series in Computer Science (1989)

    Google Scholar 

  20. Möller, B.: Derivation of graph and pointer algorithms. In: Möller, B., Schuman, S., Partsch, H. (eds.) Formal Program Development. LNCS, vol. 755, pp. 123–160. Springer, Heidelberg (1993)

    Google Scholar 

  21. Ng, K.C.: Relation algebras with transitive closure. PhD thesis. University of California, Berkeley (1984)

    Google Scholar 

  22. Ng, K.C., Tarski, A.: Relation algebras with transitive closure. Abstract 742-02- 09. Notices of the American Mathematical Society 24 (1977)

    Google Scholar 

  23. Schmidt, G., Ströhlein, T.: Relations and Graphs. EATCS Monographs in Computer Science. Springer, Berlin (1993)

    MATH  Google Scholar 

  24. Schmidt, G., Hattensperger, C., Winter, M.: Heterogeneous relation algebra. In: Brink, C., Kahl, W., Schmidt, G. (eds.) Relationa Methods in Computer Science, Springer, Heidelberg (1997)

    Google Scholar 

  25. Tarski, A.: On the calculus of relations. Journal of Symbolic Logic 6, 73–89 (1941)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Desharnais, J. (2004). Kleene Algebra with Relations. In: Berghammer, R., Möller, B., Struth, G. (eds) Relational and Kleene-Algebraic Methods in Computer Science. RelMiCS 2003. Lecture Notes in Computer Science, vol 3051. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24771-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24771-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22145-6

  • Online ISBN: 978-3-540-24771-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics