Abstract
The problem of representability of a (finite) Boolean algebra with an additional binary relation by a data matrix (information structure) and a binary generalized quantifier is studied for various classes of (associational) quantifiers. The computational complexity of the problem for the class of all associational quantifiers and for the class of all implicational quantifiers is determined and the problem is related to (generalized) threshold functions and (positive) assumability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Düntsch, I., Orłowska, E.: Beyond modalities: Sufficiency and mixed algebras. In: Orlowska, et al. (eds.) Relational methods for computer science applications, pp. 263–286. Physica Verlag, Heidelberg (2001)
Hájek, P., Havel, I., Chytil, M.: The GUHA method of automatic hypotheses determination. Computing 1, 293–308 (1966)
Hájek, P., Havránek, T.: Mechanizing Hypothesis Formation (Mathematical Foundations for a General Theory), p. 396. Springer, Heidelberg (1978), Free internet version: www.cs.cas.cz/hajek/guhabook
Hájek, P., Sochorová, A., Zvárová, J.: GUHA for personal computers. Comp. Stat., Data Arch. 19, 149–153
Hájek, P.: Relations in GUHA style data mining. In: Proc. Relmics 6, Tilburg, The Netherlands, pp. 91–96
Hájek, P.: The GUHA method and mining association rules. In: Proc. CIMA 2001, Bangor, Wales, pp. 533–539 (2001)
Hájek, P., Holeňa, M.: Formal logics of discovery and hypothesis formation by machine. Theoretical Computer 292, 345–357 (2003)
Hájek, P.: On generalized quantifiers, finite sets and data mining. In: Klopotek, et al. (eds.) Intelligent Information Processing and Data Mining, pp. 489–496. Physica Verlag, Heidelberg (2003)
Muroga, S.: Threshold logic and its applications. Wiley, Chichester (1971)
Rauch, J., Šimůnek, M.: Mining for 4ft association rules. In: Morishita, S., Arikawa, S. (eds.) DS 2000. LNCS (LNAI), vol. 1967, pp. 268–272. Springer, Heidelberg (2000)
Rauch, J.: Interesting Association Rules and Multi-relational Association Rules. Communications of Institute of Information and Computing Machinery 5(2), 77–82 (2002)
Servedio, R.A.: Probabilistic construction of monotone formulae for positive linear threshold functions (1999) unpublished manuscript from see http://citeseer.nj.nec.com/354927.html
GUHA+– project web site, http://www.cs.cas.cz/ics/software.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hájek, P. (2004). Relations and GUHA-Style Data Mining II. In: Berghammer, R., Möller, B., Struth, G. (eds) Relational and Kleene-Algebraic Methods in Computer Science. RelMiCS 2003. Lecture Notes in Computer Science, vol 3051. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24771-5_14
Download citation
DOI: https://doi.org/10.1007/978-3-540-24771-5_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22145-6
Online ISBN: 978-3-540-24771-5
eBook Packages: Springer Book Archive