[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Lattices with Many Cycles Are Dense

  • Conference paper
STACS 2004 (STACS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2996))

Included in the following conference series:

Abstract

We give a method for approximating any n-dimensional lattice with a lattice Λ whose factor group ℤn/ ∧ has n-1 cycles of equal length with arbitrary precision. We also show that a direct consequence of this is that the Shortest Vector Problem and the Closest Vector Problem cannot be easier for this type of lattices than for general lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ajtai, M.: Generating Hard Instances of Lattice Problems. In: Proc. 28th ACM Symposium on Theory of Computing, pp. 99–108 (1996)

    Google Scholar 

  2. Ajtai, M.: The shortest vector problem in I 2 is NP-hard for randomized reductions. In: Proc. 30th ACM Symposium on the Theory of Computing, pp. 10–19 (1998)

    Google Scholar 

  3. Cai, J.-Y., Nerurkar, A.: An Improved Worst-Case to Average-Case Connection for Lattice Problems. In: Proc. 38th IEEE Symposium on Foundations of Computer Science, pp. 468–477 (1997)

    Google Scholar 

  4. Dinur, I.: Approximating SVP∞ to within almost polynomial factors is NP-hard. CIAC 2000. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 263–276. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Goldreich, O., Goldwasser, S.: On the limits of non-approximability of lattice problems. Journal of Computer and System Sciences 60(3), 540–563 (2000), Can be obtained from http://www.eccc.uni-trier.de/eccc

    Article  MATH  MathSciNet  Google Scholar 

  6. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Kannan, R., Bachem, A.: Polynomial Algorithms for Computing of the Smith and Hermite Normal Forms of an Integer Matrix. SIAM Journal of Computing 8, 499–507 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  8. Khot, S.: Hardness of Approximating the Shortest Vector Problem in High Lp Norms. In: Proc. 44th IEEE Symposium on Foundations of Computer Science, pp. 290–297 (2003)

    Google Scholar 

  9. Lagarias, J.C.: The Computational Complexity of Simultaneous Diophantine Approximation Problems. SIAM Journal of Computing 14, 196–209 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring Polynomials with Rational Coefficients. Mathematische Annalen 261, 515–534 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  11. Micciancio, D.: Improving Lattice Based Cryptosystems Using the Hermite Normal Form. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 126–145. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Micciancio, D.: The Shortest Vector in a Lattice is Hard to Approximate within Some Constant. SIAM Journal of Computing 30, 2008–2035 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Paz, A., Schnorr, C.P.: Approximating Integer Lattices by Lattices with Cyclic Lattice Groups. Automata, languages and programming (Karlsruhe), pp. 386–393 (1987)

    Google Scholar 

  14. Trolin, M.: The Shortest Vector Problem in Lattices with Many Cycles. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 194–205. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Trolin, M.: Lattices with Many Cycles are Dense (full version), Can be obtained from http://www.nada.kth.se/~marten

  16. van Emde Boas, P.: Another NP-complete partition problem and the complexity of computing short vectors in lattices. Technical Report 81-04. Mathematics Department, University of Amsterdam (1981), Can be obtained from http://turing.wins.uva.nl/~peter

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Trolin, M. (2004). Lattices with Many Cycles Are Dense. In: Diekert, V., Habib, M. (eds) STACS 2004. STACS 2004. Lecture Notes in Computer Science, vol 2996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24749-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24749-4_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21236-2

  • Online ISBN: 978-3-540-24749-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics