[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Longest Repeats with a Block of Don’t Cares

  • Conference paper
LATIN 2004: Theoretical Informatics (LATIN 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2976))

Included in the following conference series:

Abstract

We introduce an algorithm for extracting all longest repeats with k don’t cares from a given sequence. Such repeats are composed of two parts separated by a block of k don’t care symbols. The algorithm uses suffix trees to fulfill this task and relies on the ability to answer the lowest common ancestor queries in constant time. It requires O(n log n) time in the worst-case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adel’son-Vel’skii, G.M., Landis, Y.M.: An Algorithm for the Organisation of Information. Doklady Akademii Nauk SSSR 146, 263–266 (1962)

    MathSciNet  Google Scholar 

  2. Brodal, G.S., Lyngsø, R.B., Pedersen, C.N.S., Stoye, J.: Finding Maximal Pairs with Bounded Gaps. Journal of Discrete Algorithms. Special Issue of Matching Patterns 1(1), 77–104 (2000)

    Google Scholar 

  3. Brown, M.R., Tarjan, R.E.: A Fast Merging Algorithm. Journal of the ACM 26(2), 211–226 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  4. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific, Singapore (2002)

    Book  Google Scholar 

  5. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Cambridge Univesity Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  6. Iliopoulos, C.S., Markis, C., Sioutas, S., Tsakalidis, A., Tsichlas, K.: Identififying Ocuurences of Maximal Pairs in Multiple Strings. In: Apostolico, A., Takeda, M. (eds.) CPM 2002. LNCS, vol. 2373, pp. 133–143. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Kolpakov, R., Kucherov, G.: Finding Repeats with Fixed Gap. In: Laender, A.H.F., Oliveira, A.L. (eds.) SPIRE 2002. LNCS, vol. 2476, pp. 162–168. Springer, Heidelberg (2002)

    Google Scholar 

  8. Schieber, B., Vishkin, U.: On Finding Lowest Common Ancestors: Simplifications and Parallization. SIAM Journal of Computation 17, 1253–1262 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Stoye, J.: Affix Trees. Diploma Thesis, Universität Bielefeld, Forschungsbericht der Technischen Fakultät, Abteilung Informationstechnik, Report 2000–04 (2000), ISSN 0946-7831

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Crochemore, M., Iliopoulos, C.S., Mohamed, M., Sagot, MF. (2004). Longest Repeats with a Block of Don’t Cares. In: Farach-Colton, M. (eds) LATIN 2004: Theoretical Informatics. LATIN 2004. Lecture Notes in Computer Science, vol 2976. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24698-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24698-5_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21258-4

  • Online ISBN: 978-3-540-24698-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics