[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Chromatic Image Understanding System for Lung Cancer Cell Identification Based on Fuzzy Knowledge

  • Conference paper
Innovations in Applied Artificial Intelligence (IEA/AIE 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3029))

Abstract

This paper presents an intelligent medical chromatic image understanding system for lung cancer cell identification based on fuzzy knowledge representation and reasoning. Following image analysis and a low-level feature extraction process, a two-layer rule-based fuzzy knowledge model is proposed to represent the domain knowledge needed for image understanding task. Experimental results show that the system achieves not only a high rate of overall correct identification, but also a low rate of false negative identification, that is, a low rate of identifying cancer cases to be normal ones, which is important in reducing false diagnosis cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ye, Y.K., Shao, C., Ge, X.Z., et al.: Design and Clinical research of a Novel Instrument for Lung Cancer Early-stage Diagnosis. Chinese Journal of Surgery 30(5), 303–305 (1992)

    Google Scholar 

  2. Bezdek, J.C., Hall, L.O., Clarke, L.P.: Review of MR image segmentation techniques using pattern recognition. Medical Physics 20(4), 1033–1048 (1993)

    Article  Google Scholar 

  3. Kummert, F., et al.: Control and explanation in a signal understanding environment. Signal Processing 32, 111–145 (1993)

    Article  Google Scholar 

  4. Tombropoulos, R., et al.: A Decision Aid for Diagnosis of Liver Lesions on MRI. Section on Medical Informatics, Stanford University School of Medicine, AMIA (1994)

    Google Scholar 

  5. Osareh, A., Mirmehdi, M., Thomas, B., Markham, R.: Automatic recognition of exudative maculopathy using fuzzy c-means clustering and neural networks. In: Medical Image Underestanding and Analysis Conference, pp. 49–52. BMVA Press (2001)

    Google Scholar 

  6. Grimson, W.: Medical Applications of Image Understanding. IEEE Expert 10, 18–28 (1995)

    Article  Google Scholar 

  7. Yang, Y.B., Li, N., Chen, S.F., Chen, Z.Q.: Lung Cancer Identification Based on Image Content. In: 6th International Conference for Young Computer Scientists, vol. 1, pp. 237–240 (2001)

    Google Scholar 

  8. Freeman, H.: Computer Processing of Line-drawing Image. Computing Surveys 6(1), 57–97 (1974)

    Article  MATH  Google Scholar 

  9. Section of Pathology, Shanghai Tumor Hospital: Applied Tumor Cytology. Shanghai, Shanghai People’s Publishing House (1975)

    Google Scholar 

  10. Baruch, O., Loew, M.H.: Segmentation of Two-dimensional Boundaries Using the Chain Code. Pattern Recognition 21(6), 581–589 (1988)

    Article  Google Scholar 

  11. Gaurav, S.: Digital Color Imaging. IEEE Transactions On Image Processing 6(7), 901–932 (1997)

    Article  Google Scholar 

  12. Mehtre, B.M., Kankanhalli, M.S., et al.: Color Matching for Image Retrieval. Pattern Recognition Letters 16(3), 325–331 (1995)

    Article  Google Scholar 

  13. Zadeh, L.A.: Fuzzy Logic and its Application to Approximate Reasoning. Information Processing 74, 591–594 (1974)

    MathSciNet  Google Scholar 

  14. Terano, T., Asai, K., Sugeno, M.: Fuzzy System Theory and its Applications. Academic Press, Boston (1992)

    Google Scholar 

  15. Kuncheva, L.I.: How Good Are fuzzy If-then Classiers? IEEE Transactions on Systems, Man, and Cybernetics 30(4), 501–509 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, Y., Chen, S., Lin, H., Ye, Y. (2004). A Chromatic Image Understanding System for Lung Cancer Cell Identification Based on Fuzzy Knowledge. In: Orchard, B., Yang, C., Ali, M. (eds) Innovations in Applied Artificial Intelligence. IEA/AIE 2004. Lecture Notes in Computer Science(), vol 3029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24677-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24677-0_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22007-7

  • Online ISBN: 978-3-540-24677-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics