[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Knowledge Discovery in Hepatitis C Virus Transgenic Mice

  • Conference paper
Innovations in Applied Artificial Intelligence (IEA/AIE 2004)

Abstract

For the purpose of gene identification, we propose an approach to gene expression data mining that uses a combination of unsupervised and supervised learning techniques to search for useful patterns in the data. The approach involves validation and elimination of irrelevant data, extensive data pre-processing, data visualization, exploratory clustering, pattern recognition and model summarization. We have evaluated our method using data from microarray experiments in a Hepatitis C Virus transgenic mouse model. We demonstrate that from a total of 15311 genes (attributes) we can generate simple models and identify a small number of genes that can be used for future classifications. The approach has potential for future disease classification, diagnostic and virology applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bigger, C.B., Brasky, K.M., Lanford, R.E.: DNA microarray analysis of chimpanzee liver during acute resolving hepatitis C virus infection. J. Virology 75, 7059–7066 (2001)

    Article  Google Scholar 

  2. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Chapman & Hall, New York (1984)

    MATH  Google Scholar 

  3. Cui, X., Churchill, G.: How many mice and how many arrays? Replication in mouse cDNA microarray experiments. In: Proceedings of CAMDA 2002 (2002) (in press)

    Google Scholar 

  4. Drazan, K.E.: Molecular biology of hepatitis C infection. Liver Transplantation 6, 396–406 (2000)

    Article  Google Scholar 

  5. Dudoit, S., Fridlyand, J., Speed, T.: Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 97, 77–87 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Famili, F., Ouyang, J.: Data mining: understanding data and disease modeling. Applied Informatics, 32–37 (2003)

    Google Scholar 

  7. Friedman, J.: Getting started with MART, Tutorial. Stanford University, Stanford (2002)

    Google Scholar 

  8. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  9. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2001)

    MATH  Google Scholar 

  10. Lanford, R.E., Bigger, C., Bassett, S., Klimpel, G.: The chimpanzee model of hepatitis C virus infections. ILAR Journal 42, 117–126 (2001)

    Google Scholar 

  11. Lanford, R.E., Bigger, C.: Advances in model systems for hepatitis C virus research. Virology 293, 1–9 (2002)

    Article  Google Scholar 

  12. Li, K., Prow, T., Lemon, S.M., Beard, M.R.: Cellular responses to conditional expression of hepatitis C virus core protein in Huh7 cultured human hepatoma cells. Hepatology 35, 1237–1246 (2002)

    Article  Google Scholar 

  13. Okabe, H., Satoh, S., Kato, T., Kitahara, O., Yanagawa, R., Yamaoka, Y., Tsunoda, T., Furukawa, Y., Nakamura, Y.: Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: Identification of genes involved in viral carcinogenesis and tumor progression. Cancer Research 61, 2129–2137 (2001)

    Google Scholar 

  14. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  15. Su, A.I., Pezacki, J.P., Wodicka, L., Brideau, A.D., Supekova, L., Thimme, R., Wieland, S., Bukh, J., Purcell, R.H., Schultz, P.G., Chisari, F.V.: Genomic analysis of the host response to hepatitis C virus infection. Proc. Natl. Acad. Sci. USA 99, 15669–15674 (2002)

    Article  Google Scholar 

  16. Walker, P.R., Smith, B., Liu, Q.Y., Famili, F., Valdes, J.J., Liu, Z.: Data mining of gene expression changes in Alzheimer brain. Data mining in Genomics and Proteomics, a special issue of AI in Medicine (2004)

    Google Scholar 

  17. Witten, I., Eibe, F.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Mateo (1999)

    Google Scholar 

  18. Yang, Y.H., Dudoit, S., Luu, P., Speed, T.: Normalization for cDNA Microarray Data. In: SPIE BiOS, San Jose, California (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Famili, A.F., Ouyang, J., Kryworuchko, M., Alvarez-Maya, I., Smith, B., Diaz-Mitoma, F. (2004). Knowledge Discovery in Hepatitis C Virus Transgenic Mice. In: Orchard, B., Yang, C., Ali, M. (eds) Innovations in Applied Artificial Intelligence. IEA/AIE 2004. Lecture Notes in Computer Science(), vol 3029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24677-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24677-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22007-7

  • Online ISBN: 978-3-540-24677-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics