Abstract
For the purpose of gene identification, we propose an approach to gene expression data mining that uses a combination of unsupervised and supervised learning techniques to search for useful patterns in the data. The approach involves validation and elimination of irrelevant data, extensive data pre-processing, data visualization, exploratory clustering, pattern recognition and model summarization. We have evaluated our method using data from microarray experiments in a Hepatitis C Virus transgenic mouse model. We demonstrate that from a total of 15311 genes (attributes) we can generate simple models and identify a small number of genes that can be used for future classifications. The approach has potential for future disease classification, diagnostic and virology applications.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bigger, C.B., Brasky, K.M., Lanford, R.E.: DNA microarray analysis of chimpanzee liver during acute resolving hepatitis C virus infection. J. Virology 75, 7059–7066 (2001)
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Chapman & Hall, New York (1984)
Cui, X., Churchill, G.: How many mice and how many arrays? Replication in mouse cDNA microarray experiments. In: Proceedings of CAMDA 2002 (2002) (in press)
Drazan, K.E.: Molecular biology of hepatitis C infection. Liver Transplantation 6, 396–406 (2000)
Dudoit, S., Fridlyand, J., Speed, T.: Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 97, 77–87 (2002)
Famili, F., Ouyang, J.: Data mining: understanding data and disease modeling. Applied Informatics, 32–37 (2003)
Friedman, J.: Getting started with MART, Tutorial. Stanford University, Stanford (2002)
Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2001)
Lanford, R.E., Bigger, C., Bassett, S., Klimpel, G.: The chimpanzee model of hepatitis C virus infections. ILAR Journal 42, 117–126 (2001)
Lanford, R.E., Bigger, C.: Advances in model systems for hepatitis C virus research. Virology 293, 1–9 (2002)
Li, K., Prow, T., Lemon, S.M., Beard, M.R.: Cellular responses to conditional expression of hepatitis C virus core protein in Huh7 cultured human hepatoma cells. Hepatology 35, 1237–1246 (2002)
Okabe, H., Satoh, S., Kato, T., Kitahara, O., Yanagawa, R., Yamaoka, Y., Tsunoda, T., Furukawa, Y., Nakamura, Y.: Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: Identification of genes involved in viral carcinogenesis and tumor progression. Cancer Research 61, 2129–2137 (2001)
Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann, San Mateo (1993)
Su, A.I., Pezacki, J.P., Wodicka, L., Brideau, A.D., Supekova, L., Thimme, R., Wieland, S., Bukh, J., Purcell, R.H., Schultz, P.G., Chisari, F.V.: Genomic analysis of the host response to hepatitis C virus infection. Proc. Natl. Acad. Sci. USA 99, 15669–15674 (2002)
Walker, P.R., Smith, B., Liu, Q.Y., Famili, F., Valdes, J.J., Liu, Z.: Data mining of gene expression changes in Alzheimer brain. Data mining in Genomics and Proteomics, a special issue of AI in Medicine (2004)
Witten, I., Eibe, F.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Mateo (1999)
Yang, Y.H., Dudoit, S., Luu, P., Speed, T.: Normalization for cDNA Microarray Data. In: SPIE BiOS, San Jose, California (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Famili, A.F., Ouyang, J., Kryworuchko, M., Alvarez-Maya, I., Smith, B., Diaz-Mitoma, F. (2004). Knowledge Discovery in Hepatitis C Virus Transgenic Mice. In: Orchard, B., Yang, C., Ali, M. (eds) Innovations in Applied Artificial Intelligence. IEA/AIE 2004. Lecture Notes in Computer Science(), vol 3029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24677-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-24677-0_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22007-7
Online ISBN: 978-3-540-24677-0
eBook Packages: Springer Book Archive