[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Neural Representation of a Solar Collector with Statistical Optimization of the Training Set

  • Conference paper
Innovations in Applied Artificial Intelligence (IEA/AIE 2004)

Abstract

Alternative ways of energy producing are essential in a reality where natural resources have been scarce and solar collectors are one of these ways. However the mathematical modeling of solar collectors involves parameters that may lead to nonlinear equations. Due to their facility of solving nonlinear problems, ANN (i.e. Artificial Neural Networks) are presented here, as an alternative to represent these solar collectors with several advantages on other techniques of modeling, like linear regression. Techniques for selecting representative training sets are also discussed and presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Morrison, G.L., Ranatunga, D.B.J.: Transient response of thermosiphon solar collectors. Solar Energy 24, 191 (1980)

    Article  Google Scholar 

  2. Huang, B.J.: Similarity theory of solar water heater with natural circulation. Solar Energy 25, 105 (1984)

    Article  Google Scholar 

  3. Kudish, A.I., Santaura, P., Beaufort, P.: Direct measurement and analysis of thermosiphon flow. Solar Energy 35(2), 167–173

    Google Scholar 

  4. Kalogirou, S.A.: Thermosiphon solar domestic water heating systems: long term performance prediction using ANN. Solar Energy 69(2), 167–174 (2000)

    Article  Google Scholar 

  5. Kalogirou, S.A., Panteliou, S., Dentsoras, A.: Modeling solar domestic water heating systems using ANN. Solar Energy 68(6), 335–342 (1999)

    Article  Google Scholar 

  6. Duffie, J.A., Beckman, W.A.: Solar Engineering of Thermal Processes, 2a edn. John Wiley & Sons, Inc., USA (1999)

    Google Scholar 

  7. Kovács, Z.L.: Redes Neurais Artificiais. Edição acadêmica São Paulo, Cap 5, São Paulo. Brasil, pp. 75–76 (1996)

    Google Scholar 

  8. Bittencout, F.R., Zárate, L.E.: Controle da Laminação em Redes Neurais, com Capacidade de Generalização, e Lógica Nebulosa via Fatores de Sensibilidade, CBA, Natal, RN (2002)

    Google Scholar 

  9. Ashrae 93-86 Ra 91. Methods of Testing to Determine the Thermal Performance of Solar Collectors, American Society of Heating, Refrigeration, and Air-Conditioning Engineers, Inc., Atlanta (1986)

    Google Scholar 

  10. Zárate, L.E., Pereira, E.M., Silva, J.P., Vimieiro, R., Diniz, A.S., Pires, S.: Representation of a solar collector via artificial neural networks. In: Hamza, M.H. (ed.) International Conference On Artificial Intelligence And Applications, Benalmádena, Spain, September 8-11, pp. 517–522. ACTA Press, IASTED (2003a)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zárate, L.E., Pereira, E.M.D., Silva, J.P.D., Vimeiro, R., Diniz, A.S.C. (2004). Neural Representation of a Solar Collector with Statistical Optimization of the Training Set. In: Orchard, B., Yang, C., Ali, M. (eds) Innovations in Applied Artificial Intelligence. IEA/AIE 2004. Lecture Notes in Computer Science(), vol 3029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24677-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24677-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22007-7

  • Online ISBN: 978-3-540-24677-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics