Abstract
Bayesian Networks are one of the most popular formalisms for reasoning under uncertainty. Hierarchical Bayesian Networks (HBNs) are an extension of Bayesian Networks that are able to deal with structured domains, using knowledge about the structure of the data to introduce a bias that can contribute to improving inference and learning methods. In effect, nodes in an HBN are (possibly nested) aggregations of simpler nodes. Every aggregate node is itself an HBN modelling independences inside a subset of the whole world under consideration. In this paper we discuss how HBNs can be used as Bayesian classifiers for structured domains. We also discuss how HBNs can be further extended to model more complex data structures, such as lists or sets, and we present the results of preliminary experiments on the mutagenesis dataset.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cooper, G.F., Herskovits, E.: A bayesian method for the induction of probabilistic networks from data. Machine Learning 9, 309–347 (1992)
Cussens, J.: Parameter estimation in stochastic logic programs. Machine Learning 44(3), 245–271 (2001)
Flach, P.A., Gyftodimos, E., Lachiche, N.: Probabilistic reasoning with terms. Linkoping Electronic Articles in Computer and Information Science 7(011) (2002) (submitted), Available at http://www.ida.liu.se/ext/epa/cis/2002/011/tcover.html
Flach, P.A., Lachiche, N.: Naive bayesian classification of structured data (2003) (submitted)
Flach, P.A., Lachiche, N.: 1BC: a first-order Bayesian classifier. In: Džeroski, S., Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 92–103. Springer, Heidelberg (1999)
Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine Learning 29(2-3), 131–163 (1997)
Garg, A., Roth, D.: Understanding probabilistic classifiers. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 179–191. Springer, Heidelberg (2001)
Gyftodimos, E., Flach, P.A.: Hierarchical bayesian networks: A probabilistic reasoning model for structured domains. In: de Jong, E., Oates, T. (eds.) Proceedings of the ICML-2002 Workshop on Development of Representations, University of New South Wales (2002)
Kersting, K., De Raedt, L.: Bayesian logic programs. Technical report, Institute for Computer Science, Machine Learning Lab, University of Freiburg, Germany (2000)
Koller, D.: Probabilistic relational models. In: Džeroski, S., Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, p. 3. Springer, Heidelberg (1999)
Koller, D., Pfeffer, A.: Object-oriented bayesian networks. In: Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence (UAI-1997), pp. 302–313 (1997)
Lachiche, N., Flach, P.A.: 1BC2: a true first-order Bayesian classifier. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 133–148. Springer, Heidelberg (2003)
Lam, W., Bacchus, F.: Learning bayesian belief networks: An approach based on the mdl principle. Computational Intelligence 10, 269–294 (1994)
Lloyd, J.W.: Logic for Learning. Springer, Heidelberg (2003)
Muggleton, S.: Stochastic logic programs. In: de Raedt, L. (ed.) Advances in Inductive logic programming, pp. 254–264. IOS press, Amsterdam (1996)
Pearl, J.: Probabilistic Reasoning in Intelligent Systems — Networks of Plausible inference. Morgan Kaufmann, San Francisco (1988)
Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)
Srinivasan, A., Muggleton, S., King, R.D., Sternberg, M.J.E.: Mutagenesis: ILP experiments in a non-determinate biological domain. In: Wrobel, S. (ed.) Proceedings of the 4th International Workshop on Inductive Logic Programming, vol. 237, pp. 217–232. Gesellschaft für Mathematik und Datenverarbeitung MBH (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gyftodimos, E., Flach, P.A. (2004). Hierarchical Bayesian Networks: An Approach to Classification and Learning for Structured Data. In: Vouros, G.A., Panayiotopoulos, T. (eds) Methods and Applications of Artificial Intelligence. SETN 2004. Lecture Notes in Computer Science(), vol 3025. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24674-9_31
Download citation
DOI: https://doi.org/10.1007/978-3-540-24674-9_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-21937-8
Online ISBN: 978-3-540-24674-9
eBook Packages: Springer Book Archive