[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Hierarchical Bayesian Networks: An Approach to Classification and Learning for Structured Data

  • Conference paper
Methods and Applications of Artificial Intelligence (SETN 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3025))

Included in the following conference series:

Abstract

Bayesian Networks are one of the most popular formalisms for reasoning under uncertainty. Hierarchical Bayesian Networks (HBNs) are an extension of Bayesian Networks that are able to deal with structured domains, using knowledge about the structure of the data to introduce a bias that can contribute to improving inference and learning methods. In effect, nodes in an HBN are (possibly nested) aggregations of simpler nodes. Every aggregate node is itself an HBN modelling independences inside a subset of the whole world under consideration. In this paper we discuss how HBNs can be used as Bayesian classifiers for structured domains. We also discuss how HBNs can be further extended to model more complex data structures, such as lists or sets, and we present the results of preliminary experiments on the mutagenesis dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cooper, G.F., Herskovits, E.: A bayesian method for the induction of probabilistic networks from data. Machine Learning 9, 309–347 (1992)

    MATH  Google Scholar 

  2. Cussens, J.: Parameter estimation in stochastic logic programs. Machine Learning 44(3), 245–271 (2001)

    Article  MATH  Google Scholar 

  3. Flach, P.A., Gyftodimos, E., Lachiche, N.: Probabilistic reasoning with terms. Linkoping Electronic Articles in Computer and Information Science 7(011) (2002) (submitted), Available at http://www.ida.liu.se/ext/epa/cis/2002/011/tcover.html

  4. Flach, P.A., Lachiche, N.: Naive bayesian classification of structured data (2003) (submitted)

    Google Scholar 

  5. Flach, P.A., Lachiche, N.: 1BC: a first-order Bayesian classifier. In: Džeroski, S., Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 92–103. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine Learning 29(2-3), 131–163 (1997)

    Article  MATH  Google Scholar 

  7. Garg, A., Roth, D.: Understanding probabilistic classifiers. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 179–191. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Gyftodimos, E., Flach, P.A.: Hierarchical bayesian networks: A probabilistic reasoning model for structured domains. In: de Jong, E., Oates, T. (eds.) Proceedings of the ICML-2002 Workshop on Development of Representations, University of New South Wales (2002)

    Google Scholar 

  9. Kersting, K., De Raedt, L.: Bayesian logic programs. Technical report, Institute for Computer Science, Machine Learning Lab, University of Freiburg, Germany (2000)

    Google Scholar 

  10. Koller, D.: Probabilistic relational models. In: Džeroski, S., Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, p. 3. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  11. Koller, D., Pfeffer, A.: Object-oriented bayesian networks. In: Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence (UAI-1997), pp. 302–313 (1997)

    Google Scholar 

  12. Lachiche, N., Flach, P.A.: 1BC2: a true first-order Bayesian classifier. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 133–148. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Lam, W., Bacchus, F.: Learning bayesian belief networks: An approach based on the mdl principle. Computational Intelligence 10, 269–294 (1994)

    Article  Google Scholar 

  14. Lloyd, J.W.: Logic for Learning. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  15. Muggleton, S.: Stochastic logic programs. In: de Raedt, L. (ed.) Advances in Inductive logic programming, pp. 254–264. IOS press, Amsterdam (1996)

    Google Scholar 

  16. Pearl, J.: Probabilistic Reasoning in Intelligent Systems — Networks of Plausible inference. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  17. Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)

    Article  MATH  Google Scholar 

  18. Srinivasan, A., Muggleton, S., King, R.D., Sternberg, M.J.E.: Mutagenesis: ILP experiments in a non-determinate biological domain. In: Wrobel, S. (ed.) Proceedings of the 4th International Workshop on Inductive Logic Programming, vol. 237, pp. 217–232. Gesellschaft für Mathematik und Datenverarbeitung MBH (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gyftodimos, E., Flach, P.A. (2004). Hierarchical Bayesian Networks: An Approach to Classification and Learning for Structured Data. In: Vouros, G.A., Panayiotopoulos, T. (eds) Methods and Applications of Artificial Intelligence. SETN 2004. Lecture Notes in Computer Science(), vol 3025. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24674-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24674-9_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21937-8

  • Online ISBN: 978-3-540-24674-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics