[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Introducing Query Expansion Methods for Collaborative Information Retrieval

  • Chapter
Reading and Learning

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2956))

Abstract

The accuracy of ad-hoc document retrieval systems has plateaued in the last few years. At DFKI, we are working on so-called collaborative information retrieval (CIR) systems which unobtrusively learn from their users’ search processes. We focus on a restricted setting in CIR in which only old queries and correct answer documents to these queries are available for improving a new query. For this restricted setting we propose new approaches for query expansion procedures. This paper describes query expansion methods to be used in collaborative information retrieval. We define collaborative information retrieval as a task, where an information retrieval system uses information gathered from previous search processes from one or several users to improve retrieval performance for the current user searching for information. We show how collaboration of individual users can improve overall information retrieval performance. Performance in this case is expressed in terms of quality and utility of the retrieved information regardless of specific user groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agichtein, E., Lawrence, S., Gravano, L.: Learning search engine specific query transformations for question answering. In: Proceedings of the 10th International World Wide Web Conference, Hong Kong, pp. 169–178 (2001)

    Google Scholar 

  2. Alsaffar, A.H., Deogun, J.S., Sever, H.: Optimal queries in information filtering. In: Ohsuga, S., Raś, Z.W. (eds.) ISMIS 2000. LNCS (LNAI), vol. 1932, pp. 435–443. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison- Wesley Publishing Company, Reading (1999)

    Google Scholar 

  4. Berry, M.W., Drmac, Z., Jessup, E.R.: Matrices, vector spaces, and information retrieval. Society for Industrial and Applied Mathematics Review 41(2), 335–362 (1999)

    MATH  MathSciNet  Google Scholar 

  5. Buckley, C., Salton, G., Allan, J., Singhal, A.: Automatic query expansion using smart. In: Harman, D. (ed.) Proceedings of the Third Text Retrieval Conference (TREC-3), Gaithersburg, MD, pp. 69–80 (1995)

    Google Scholar 

  6. Crestani, F., van Rijsbergen, C.J.: A study of probability kinematics in information retrieval. ACM Transactions on Information Systems (TOIS) 16(3), 225–255 (1998)

    Article  Google Scholar 

  7. Crestani, F., van Rijsbergen, C.J.: Information retrieval by imaging. Journal of Documentation 51(1), 1–15 (1995)

    Article  Google Scholar 

  8. Crestani, F., van Rijsbergen, C.J.: Probability kinematics in information retrieval: Acase study. In: Fox, E.A., Ingwersen, P., Fidel, R. (eds.) Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Seattle, Washington, USA, July 1995, pp. 291–299. ACM Press, NewYork (1995)

    Chapter  Google Scholar 

  9. Cristianini, N., Lodhi, H., Shawe-Taylor, J.: Latent semantic kernels for feature selection (2000)

    Google Scholar 

  10. Cui, H., Wen, J.-R., Nieand, J.-Y., Ma, W.-Y.: Probabilistic query expansion using query logs. In: Eleventh International World Wide Web Conference, Honolulu, Hawaii, USA (May 2002)

    Google Scholar 

  11. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.A.: Indexing by latent semantic analysis. Journal of the American Society for Information Science and Technology 41(6), 391–407 (1990)

    Article  Google Scholar 

  12. Efthimiadis, E.N.: Query expansion. Annual Review of Information Science and Technology 31, 121–187 (1996)

    Google Scholar 

  13. Ferber, R.: Information Retrieval - Suchmodelle und Data-Mining-Verfahren für Textsammlungen und das Web. dpunkt.verlag, Heidelberg (2003)

    MATH  Google Scholar 

  14. Fuhr, N.: Goals and tasks of the IR-group. Homepage of the IR-group of the German Informatics Society (1996), http://ls6-www.cs.uni-dortmund.de/ir/fgir/mitgliedschaft/brochure2.html

  15. Furnas, G.W., Deerwester, S., Dumais, S.T., Landauer, T.K., Harshman, R.A., Streeter, L.A., Lochbaum, K.E.: Information retrieval using a singular value decomposition model of latent semantic structure. In: Chiaramella, Y. (ed.) Proceedings of the 11th Annual International ACM SIGIR conference on Research and Development in Information Retrieval, Grenoble, France, May 1988, pp. 465–480. ACM Press, NewYork (1988)

    Chapter  Google Scholar 

  16. Harman, D.: Relevance feedback and other query modification techniques. In: William, B. (ed.) Information Retrieval - Data Structures & Algorithms, New Jersey, pp. 241–263. Prentice Hall, Englewood Cliffs (1992)

    Google Scholar 

  17. Harman, D.: Relevance feedback revisited. In: Belkin, N., Ingwersen, P., Pejtersen, A.M. (eds.) Proceedings of the 15th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Copenhagen, Denmark, June 1992, pp. 1–10. ACM Press, New York (1992)

    Chapter  Google Scholar 

  18. Henrich, A.: IR research at university of bayreuth. Homepage of the IR-research group mmdb (2002), http://ai1.inf.uni-bayreuth.de/forschung/forschungsgebiete/ir_mmdb

  19. Hull, D.: Using statistical testing in the evaluation of retrieval experiments. In: Korfhage, R., Rasmussen, E., Willett, P. (eds.) Proceedings of the 16th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Pittsburgh, Pennsylvania, USA, June 1993, pp. 329–338. ACM Press, NewYork (1993)

    Chapter  Google Scholar 

  20. Hust, A., Junker, M., Dengel, A.: A mathematical model for improving retrieval performance in collaborative information retrieval (2003) (to appear)

    Google Scholar 

  21. Hust, A., Klink, S., Junker, M., Dengel, A.: Query expansion for web information retrieval. In: Schubert, S., Reusch, B., Jesse, N. (eds.) AIRS 2006. Lecture Notes in Informatics, vol. P-19, pp. 176–180. German Informatics Society (2002)

    Google Scholar 

  22. Hust, A., Klink, S., Junker, M., Dengel, A.: Query reformulation in collaborative information retrieval. In: Boumedine, M. (ed.) Proceedings of the International Conference on Information and Knowledge Sharing, IKS 2002, St. Thomas, U.S. Virgin Islands, November 2002, pp. 95–100. ACTA Press (2002)

    Google Scholar 

  23. Hust, A., Klink, S., Junker, M., Dengel, A.: Towards collaborative information retrieval: Three approaches. In: Franke, I.R.J., Nakhaeizadeh, G. (eds.) Text Mining - Theoretical Aspects and Applications. Physica-Verlag, Heidelberg (2003)

    Google Scholar 

  24. Joachims, T.: Unbiased evaluation of retrieval quality using clickthrough data. Technical report, Cornell University, Department of Computer Science (2002)

    Google Scholar 

  25. Kise, K., Junker, M., Dengel, A., Matsumoto, K.: Experimental evaluation of passage-based document retrieval. In: Proceedings of the Sixth International Conference on Document Analysis and Recognition ICDAR 2001, Seattle,WA, September 2001, pp. 592–596 (2001)

    Google Scholar 

  26. Kise, K., Junker, M., Dengel, A., Matsumoto, K.: Passage-based document retrieval as a tool for text mining with user’s information needs. In: Jantke, K.P., Shinohara, A. (eds.) DS 2001. LNCS (LNAI), vol. 2226, pp. 155–169. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  27. Klink, S., Hust, A., Junker, M., Dengel, A.: Collaborative learning of term-based concepts for automatic query expansion. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, pp. 195–206. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  28. Klink, S., Hust, A., Junker, M., Dengel, A.: Improving document retrieval by automatic query expansion using collaborative learning of term-based concepts. In: Lopresti, D.P., Hu, J., Kashi, R.S. (eds.) DAS 2002. LNCS, vol. 2423, pp. 376–387. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  29. Kolda, T.G.: Limited-memory matrix methods with applications. Technical Report CS-TR-3806, University of Maryland (1997)

    Google Scholar 

  30. Kolda, T.G., O’Leary, D.P.: A semidiscrete matrix decomposition for latent semantic indexing information retrieval. ACMTransactions on Information Systems 16(4), 322–346 (1998)

    Article  MathSciNet  Google Scholar 

  31. Lancaster, F.W.: Information Retrieval Systems: Characteristics, Testing and Evaluation. Wiley, NewYork (1968)

    Google Scholar 

  32. Manning, C.D., Schütze, H.: Foundations of Natural Language Processing. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  33. Minker, J., Wilson, G., Zimmerman, B.: An evaluation of query expansion by the addition of clustered terms for a document retrieval system. Information Storage and Retrieval 8, 329–348 (1972)

    Article  Google Scholar 

  34. Olsson, T.: Information filtering with collaborative agents. Master’s thesis, Department of Computer and Systems Sciences, Royal Institute of Technology, Sweden (1998)

    Google Scholar 

  35. Phibot search engine. Homepage (2002), http://phibot.org

  36. Qiu, Y., Frei, H.-P.: Concept-based query expansion. In: Korfhage, R., Rasmussen, E., Willett, P. (eds.) Proceedings of the 16th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Pittsburgh, Pennsylvania, USA, June 1993, pp. 160–169. ACM Press, NewYork (1993)

    Chapter  Google Scholar 

  37. Raghavan, V.V., Sever, H.: On the reuse of past optimal queries. In: Fox, E.A., Ingwersen, P., Fidel, R. (eds.) Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Seattle, Washington, USA, July 1995, pp. 344–350. ACM Press, NewYork (1995)

    Chapter  Google Scholar 

  38. Robertson, S.E., Sparck-Jones, K.: Relevance weighting of search terms. Journal of the American Society for Information Science 27, 129–146 (1976)

    Article  Google Scholar 

  39. Robertson, S.E., Walker, S., Hancock-Beaulieu, M.: Okapi at TREC-7: automatic ad hoc, filtering, VLC and interactive track. In: Proceedings of the Seventh Text Retrieval Conference (TREC-7) (1998)

    Google Scholar 

  40. Salton, G.: The SMART retrieval system - experiments in automatic document processing. Prentice Hall, Englewood Cliffs (1971)

    Google Scholar 

  41. Salton, G., Buckley, C.: Term weighting approaches in automatic text retrieval. Information Processing & Management 24(5), 513–523 (1988)

    Article  Google Scholar 

  42. Salton, G., Buckley, C.: Improving retrieval performance by relevance feedback. Journal of the American Society for Information Science and Technology 41(4), 288–297 (1990)

    Article  Google Scholar 

  43. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill Book Co., NewYork (1983)

    MATH  Google Scholar 

  44. Sever, H.: Knowledge Structuring for Database Mining and Text Retrieval Using Past Optimal Queries. PhD thesis, University of Louisiana, Lafayette, LA (May 1995)

    Google Scholar 

  45. Ftp directory at cornell university. Homepage (1968–1988), ftp://ftp.cscornell.edu/pub/smart

  46. Sparck-Jones, K., Needham, R.M.: Automatic term classification and retrieval. Information Storage and Retrieval 4, 91–100 (1968)

    Article  Google Scholar 

  47. Thornton, J.: Collaborative Filtering Research Papers. Homepage of James Thornton (2003), http://jamesthornton.com/cf/

  48. Tian, L.F., Cheung, K.-W.: Learning user similarity and rating style for collaborative recommendation. In: Sebastiani, F. (ed.) ECIR 2003. LNCS, vol. 2633, pp. 135–145. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  49. Text REtrieval Conference (TREC). Homepage (1992–2003), http://trec.nist.gov

  50. van Rijsbergen, C.J.: Information Retrieval, Butterworths, London (1979)

    Google Scholar 

  51. van Rijsbergen, C.J.: A non classical logic for information retrieval. The Computer Journal 29(6), 481–485 (1986)

    Article  MATH  Google Scholar 

  52. van Rijsbergen, C.J.: Towards an information logic. In: Belkin, N.J., van Rijsbergen, C.J. (eds.) Proceedings of the 12th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Cambridge, Massachusetts, USA, June 1989, pp. 77–86. ACM Press, NewYork (1989)

    Chapter  Google Scholar 

  53. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)

    MATH  Google Scholar 

  54. Voorhees, E.M.: Overview of the TREC 2001 question answering track. In: Proceedings of the Tenth Text Retrieval Conference (TREC-10) (2002)

    Google Scholar 

  55. Voorhees, E.M., Harman, D.: Overview of the eighth text retrieval conference (TREC-8). In: Proceedings of the Eighth Text Retrieval Conference (TREC-8) (2000)

    Google Scholar 

  56. Voorhees, E.M., Harman, D.: Overview of the ninth text retrieval conference (TREC-9). In: Proceedings of the Ninth Text Retrieval Conference (TREC-9) (2001)

    Google Scholar 

  57. Wen, J.-R., Nie, J.-Y., Zhang, H.-J.: Clustering user queries of a search engine. In: Proceedings of the 10th International World WideWeb Conference, Hong Kong, May 2001, pp. 162–168 (2001)

    Google Scholar 

  58. Wen, J.-R., Nie, J.-Y., Zhang, H.-J.: Query clustering using user logs. ACM Transactions on Information Systems 20(1), 59–81 (2002)

    Article  Google Scholar 

  59. White, R.W., Ruthven, I., Jose, J.M.: The use of implicit evidence for relevance feedback in web retrieval. In: Crestani, F., Girolami, M., van Rijsbergen, C.J.K. (eds.) ECIR 2002. LNCS, vol. 2291, pp. 93–109. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  60. Xu, J., Croft, W.B.: Query expansion using local and global document analysis. In: Frei, H.-P., Harman, D., Schaübie, P., Wilkinson, R. (eds.) Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Zurich, Switzerland, August 1996, pp. 4–11. ACMPress, NewYork (1996)

    Chapter  Google Scholar 

  61. Xu, J., Croft, W.B.: Improving the effectiveness of information retrieval with local context analysis. ACM Transactions on Information Systems 18(1), 79–112 (2000)

    Article  Google Scholar 

  62. Yang, Y., Liu, X.: A re-examination of text categorization methods. In: Gey, F., Hearst, M., Tong, R. (eds.) Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Berkeley, California, USA, August 1999, pp. 42–49. ACM Press, NewYork (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hust, A. (2004). Introducing Query Expansion Methods for Collaborative Information Retrieval. In: Dengel, A., Junker, M., Weisbecker, A. (eds) Reading and Learning. Lecture Notes in Computer Science, vol 2956. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24642-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24642-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21904-0

  • Online ISBN: 978-3-540-24642-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics