[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Recombination and Self-Adaptation in Multi-objective Genetic Algorithms

  • Conference paper
Artificial Evolution (EA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2936))

Abstract

This paper investigates the influence of recombination and self-adaptation in real-encoded Multi-Objective Genetic Algorithms (MOGAs). NSGA-II and SPEA2 are used as example to characterize the efficiency of MOGAs in relation to various recombination operators. The blend crossover, the simulated binary crossover and the breeder genetic crossover are compared for both MOGAs on multi-objective problems of the literature. Finally, a self-adaptive recombination scheme is proposed to improve the robustness of MOGAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Corne, D.W., Knowles, J.D., Oates, M.J.: The Pareto Envelope-based Selection Algorithm for Multiobjective Optimization. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.P. (eds.) Proceedings of the Parallel Problem Solving from Nature VI Conference, pp. 839–848. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Costa, L., Oliveira, P.: An Evolution Strategy for Multiobjective Optimization. In: Congress on Evolutionary Computation (CEC 2002), vol. 1, pp. 97–102. IEEE Service Center, Piscataway (2002)

    Google Scholar 

  3. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A fast-elitist non-dominated sorting genetic algorithm for multiobjective optimization: NSGA-II. In: Proceeding of the Parallel Problem Solving from Nature VI Conference, pp. 849–858 (2000)

    Google Scholar 

  4. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. In: Giannakoglou, K., Tsahalis, D., Periaux, J., Papailou, P., Fogarty, T. (eds.) EUROGEN 2001, Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, Athens, Greece, September 2001, pp. 12–21 (2001)

    Google Scholar 

  5. Laumanns, M., Rudolph, G., Schwefel, H.P.: Approximating the Pareto Set: Concepts, Diversity Issues, and Performance Assessment, Technical Report CI-72/99, Dortmund: Department of Computer Science/LS11, University of Dortmund, Germany (1999) ISSN 1433-3325

    Google Scholar 

  6. Laumanns, M., Rudolph, G., Schwefel, H.P.: Mutation Control and Convergence in Evolutionary Multi-Objective Optimization. In: Matousek, R., Osmera, P. (eds.) Proceedings of the 7th International Mendel Conference on Soft Computing (MENDEL 2001), Brno University of Technology, Brno, Czech Republic, pp. 97–106 (2001)

    Google Scholar 

  7. Eshelman, L.J., Schaffer, J.D.: Real-coded genetic algorithms and interval schemata. In: Whitley, D. (ed.) Foundations of Genetic Algorithms II, pp. 187–202 (1993)

    Google Scholar 

  8. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  9. Deb, K., Beyer, H.G.: Self-Adaptation in Real-Parameter Genetic Algorithms with Simulated Binary Crossover. In: Genetic and Evolutionary Computation Conference (GECCO 1999), Orlando, FL (1999)

    Google Scholar 

  10. Schlierkamp-Voosen, D., Mühlenbein, H.: Strategy Adaptation by Competing Subpopulations. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 199–208. Springer, Heidelberg (1994)

    Google Scholar 

  11. Bäck, T.: Evolutionary algorithms in Theory and Practice. Oxford University Press, New York (1996)

    MATH  Google Scholar 

  12. Spears, W.M.: Adapting crossover in evolutionary algorithms. In: Proceeding of the 5th Annual Conference on Evolutionary Programming, San Diego, CA, Morgan Kaufmann Publishers, San Francisco (1995)

    Google Scholar 

  13. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

  14. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Grefenstette, J.J. (ed.) Proccedings of the First International Conference on Genetic Algorithms and Their Applications, Pittsburgh, PA, pp. 93–100 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sareni, B., Regnier, J., Roboam, X. (2004). Recombination and Self-Adaptation in Multi-objective Genetic Algorithms. In: Liardet, P., Collet, P., Fonlupt, C., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA 2003. Lecture Notes in Computer Science, vol 2936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24621-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24621-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21523-3

  • Online ISBN: 978-3-540-24621-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics