Abstract
This paper investigates the influence of recombination and self-adaptation in real-encoded Multi-Objective Genetic Algorithms (MOGAs). NSGA-II and SPEA2 are used as example to characterize the efficiency of MOGAs in relation to various recombination operators. The blend crossover, the simulated binary crossover and the breeder genetic crossover are compared for both MOGAs on multi-objective problems of the literature. Finally, a self-adaptive recombination scheme is proposed to improve the robustness of MOGAs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Corne, D.W., Knowles, J.D., Oates, M.J.: The Pareto Envelope-based Selection Algorithm for Multiobjective Optimization. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.P. (eds.) Proceedings of the Parallel Problem Solving from Nature VI Conference, pp. 839–848. Springer, Heidelberg (2000)
Costa, L., Oliveira, P.: An Evolution Strategy for Multiobjective Optimization. In: Congress on Evolutionary Computation (CEC 2002), vol. 1, pp. 97–102. IEEE Service Center, Piscataway (2002)
Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A fast-elitist non-dominated sorting genetic algorithm for multiobjective optimization: NSGA-II. In: Proceeding of the Parallel Problem Solving from Nature VI Conference, pp. 849–858 (2000)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. In: Giannakoglou, K., Tsahalis, D., Periaux, J., Papailou, P., Fogarty, T. (eds.) EUROGEN 2001, Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, Athens, Greece, September 2001, pp. 12–21 (2001)
Laumanns, M., Rudolph, G., Schwefel, H.P.: Approximating the Pareto Set: Concepts, Diversity Issues, and Performance Assessment, Technical Report CI-72/99, Dortmund: Department of Computer Science/LS11, University of Dortmund, Germany (1999) ISSN 1433-3325
Laumanns, M., Rudolph, G., Schwefel, H.P.: Mutation Control and Convergence in Evolutionary Multi-Objective Optimization. In: Matousek, R., Osmera, P. (eds.) Proceedings of the 7th International Mendel Conference on Soft Computing (MENDEL 2001), Brno University of Technology, Brno, Czech Republic, pp. 97–106 (2001)
Eshelman, L.J., Schaffer, J.D.: Real-coded genetic algorithms and interval schemata. In: Whitley, D. (ed.) Foundations of Genetic Algorithms II, pp. 187–202 (1993)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Heidelberg (1996)
Deb, K., Beyer, H.G.: Self-Adaptation in Real-Parameter Genetic Algorithms with Simulated Binary Crossover. In: Genetic and Evolutionary Computation Conference (GECCO 1999), Orlando, FL (1999)
Schlierkamp-Voosen, D., Mühlenbein, H.: Strategy Adaptation by Competing Subpopulations. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 199–208. Springer, Heidelberg (1994)
Bäck, T.: Evolutionary algorithms in Theory and Practice. Oxford University Press, New York (1996)
Spears, W.M.: Adapting crossover in evolutionary algorithms. In: Proceeding of the 5th Annual Conference on Evolutionary Programming, San Diego, CA, Morgan Kaufmann Publishers, San Francisco (1995)
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)
Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Grefenstette, J.J. (ed.) Proccedings of the First International Conference on Genetic Algorithms and Their Applications, Pittsburgh, PA, pp. 93–100 (1985)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sareni, B., Regnier, J., Roboam, X. (2004). Recombination and Self-Adaptation in Multi-objective Genetic Algorithms. In: Liardet, P., Collet, P., Fonlupt, C., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA 2003. Lecture Notes in Computer Science, vol 2936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24621-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-540-24621-3_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-21523-3
Online ISBN: 978-3-540-24621-3
eBook Packages: Springer Book Archive