Abstract
We use an unsupervised method for learning word classes from partially parsed text corpora. A word class consists of those words that can appear in similar contexts of subcategorization. The main objective of this paper will be to describe an evaluation procedure based on attachment resolution. We will evaluate whether the classes that have been previously learnt are useful in that syntactic task.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agustini, A., Gamallo, P., Lopes, G.P.: Selection restrictions acquisition for parsing improvement. In: Bartenstein, O., et al. (eds.) Web Knowledge Management and Decision Support, Springer, Berlin (2003)
Collins, M., Brooks, J.: Prepositional phrase attachment through a backed-off model. In: Proceedings of the Third Workshop on Very Large Corpora., pp. 27–38, Cambridge (1995)
Faure, D., Nédellec, C.: Asium: Learning subcategorization frames and restrictions of selection. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, Springer, Heidelberg (1998)
Gamallo, P., Agustini, A., Lopes, G.P.: Learning subcategorisation information to model a grammar with co-restrictions. Traitement Automatic de la Langue 44(1), 93–117 (2003)
Hindle, D., Rooth, M.: Structural ambiguity and lexical relations. Computational Linguistic 19(1), 103–120 (1993)
Li, H., Abe, N.: Word clustering and disambiguation based on cooccurrence data. In: Coling-ACL 1998, pp. 749–755 (1998)
Lin, D.: Automatic retrieval and clustering of similar words. In: COLINGACL 1998, Montreal (1998)
Niemann, M.: Determining pp attachment through semantic associations and preferences. In: ANLP Post Graduate Workshop, pp. 25–32 (1998)
Pantel, P., Lin, D.: An unsupervised approach to prepositional phrase attachment using contextually similar words. In: ACL 2000, Hong Kong, pp. 101–108 (2000)
Pustejovsky, J.: The Generative Lexicon. MIT Press, Cambridge (1995)
Ratnaparkhi, A., Reymar, J., Roukos, S.: A maximum entropy model for prepositional phrase attachment. In: Proceedings of the ARPA Human Language Technology Workshop, pp. 250–225 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gamallo, P., Agustini, A., Lopes, G.P. (2003). Acquiring Semantic Classes to Elaborate Attachment Heuristics. In: Pires, F.M., Abreu, S. (eds) Progress in Artificial Intelligence. EPIA 2003. Lecture Notes in Computer Science(), vol 2902. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24580-3_56
Download citation
DOI: https://doi.org/10.1007/978-3-540-24580-3_56
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20589-0
Online ISBN: 978-3-540-24580-3
eBook Packages: Springer Book Archive