[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Acquiring Semantic Classes to Elaborate Attachment Heuristics

  • Conference paper
Progress in Artificial Intelligence (EPIA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2902))

Included in the following conference series:

  • 908 Accesses

Abstract

We use an unsupervised method for learning word classes from partially parsed text corpora. A word class consists of those words that can appear in similar contexts of subcategorization. The main objective of this paper will be to describe an evaluation procedure based on attachment resolution. We will evaluate whether the classes that have been previously learnt are useful in that syntactic task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agustini, A., Gamallo, P., Lopes, G.P.: Selection restrictions acquisition for parsing improvement. In: Bartenstein, O., et al. (eds.) Web Knowledge Management and Decision Support, Springer, Berlin (2003)

    Google Scholar 

  2. Collins, M., Brooks, J.: Prepositional phrase attachment through a backed-off model. In: Proceedings of the Third Workshop on Very Large Corpora., pp. 27–38, Cambridge (1995)

    Google Scholar 

  3. Faure, D., Nédellec, C.: Asium: Learning subcategorization frames and restrictions of selection. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, Springer, Heidelberg (1998)

    Google Scholar 

  4. Gamallo, P., Agustini, A., Lopes, G.P.: Learning subcategorisation information to model a grammar with co-restrictions. Traitement Automatic de la Langue 44(1), 93–117 (2003)

    Google Scholar 

  5. Hindle, D., Rooth, M.: Structural ambiguity and lexical relations. Computational Linguistic 19(1), 103–120 (1993)

    Google Scholar 

  6. Li, H., Abe, N.: Word clustering and disambiguation based on cooccurrence data. In: Coling-ACL 1998, pp. 749–755 (1998)

    Google Scholar 

  7. Lin, D.: Automatic retrieval and clustering of similar words. In: COLINGACL 1998, Montreal (1998)

    Google Scholar 

  8. Niemann, M.: Determining pp attachment through semantic associations and preferences. In: ANLP Post Graduate Workshop, pp. 25–32 (1998)

    Google Scholar 

  9. Pantel, P., Lin, D.: An unsupervised approach to prepositional phrase attachment using contextually similar words. In: ACL 2000, Hong Kong, pp. 101–108 (2000)

    Google Scholar 

  10. Pustejovsky, J.: The Generative Lexicon. MIT Press, Cambridge (1995)

    Google Scholar 

  11. Ratnaparkhi, A., Reymar, J., Roukos, S.: A maximum entropy model for prepositional phrase attachment. In: Proceedings of the ARPA Human Language Technology Workshop, pp. 250–225 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gamallo, P., Agustini, A., Lopes, G.P. (2003). Acquiring Semantic Classes to Elaborate Attachment Heuristics. In: Pires, F.M., Abreu, S. (eds) Progress in Artificial Intelligence. EPIA 2003. Lecture Notes in Computer Science(), vol 2902. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24580-3_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24580-3_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20589-0

  • Online ISBN: 978-3-540-24580-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics